• Title/Summary/Keyword: Organic system

Search Result 3,846, Processing Time 0.032 seconds

Bipolar Transport Model of Single Layer OLED for Embedded System

  • Lee, Jung-Ho;Han, Dae-Mun;Kim, Yeong-Real
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.237-241
    • /
    • 2005
  • We present a device model for organic light emitting diodes(OLEDs) which includes charge injection, transport, recombination, and space charge effects in the organic materials. The model can describe both injection limited and space charge limited current flow and the transition between them. Calculated device current, light output, and quantum and power efficiency are presented for different cases of material and device parameters and demonstrate the improvements in device performance in bilayer devices. These results are interpreted using the calculated spatial variation of the electric field, charge density and recombination rate density in the device. We find that efficient OLEDs are possible for a proper choice of organic materials and contact parameters.

  • PDF

pH Control for Dyebath Reuse in Dyeing of Polyamide with Binary Mixtures of Acid Dyes

  • Koh, Joonseok;Park, Sang Hyuck;Shim, Goo Hwan;Cho, Dae Hwan;Kim, Jae Pil
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.110-116
    • /
    • 2004
  • Hydrolyzable organic esters were compared with ammonium sulphate as an acid donor for the pH control in dye-bath-reuse system of acid dyes mixtures. The ability of pH control, levelness, dyeing properties and reproducibility in dye-bath-reuse system were investigated comparatively. Hydrolyzable organic esters showed higher exhaustion and color yield than ammonium sulphate. In addition, hydrolyzable organic ester exhibited very low conductivity less than 0.5 mS, while ammonium sulphate give high conductivity. However, we could not observe any difference in levelness of dyed samples between two kinds of acid donors in laboratory scale dyeing. Over 10 cycles of reuse, hydrolyzable organic esters showed higher reproducibility than ammonium sulphate. No deterioration of the color fastness and levelness occurs over 10 cycles of reuse.

Evaluation of the Organic Linings at Gas Desulfurization System (탈황 설비용 유기 라이너의 평가)

  • Song, Yo-Seung;Kwan, Hyun-Ok;Jho, Nam-In
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1178-1182
    • /
    • 2012
  • The organic linings at flue gas desulfurization systems (FGD system) in power plant have the excellent chemical properties but, lose the anticorrosive properties according to the aging with environment conditions. The properties of the organic linings depend on the manufacturing company. Therefore, the basic properties of organic linings for the preestimate of life time should be examined by conducting the aging and the bond strength test according to temperature. The pre-aging samples were compared with the post-aging samples. The temperature conditions of the aging process were 70, 150 and $200^{\circ}C$. The bond strength was calculated and the cross sections of fracture surface were examined by optical microscope and SEM. The $T_g$ was examined by DSC, DTA and TGA.

Analysis of Fluid Flow in the Linear Cell Source for Organic Semiconductor Thin Film Deposition (유기반도체 박막증착을 위한 선형증착원의 유체유동해석)

  • Kwak, In-Chul;Yang, Young-Soo;Choi, Bum-Ho;Kim, Young-Mi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.10
    • /
    • pp.74-80
    • /
    • 2009
  • This paper presents a study on fluid flow analysis of organic semiconductor thin film deposition process using the computational numerical method. In the production process, the thickness of deposited organic thin film depends on distribution of nozzle size in the linear cell system, so we analyze to decide the optimal nozzle system for uniform thickness of organic thin film. The results of deposited thickness of thin film by numerical analysis are in good agreement with those of the experimental measurements.

Study on the characterization of dissolved organic matters in Nakdong River (낙동강의 용존 유기물질 특성에 관한 연구)

  • Heo, Seong-Nam;Park, Jeong-Min;Im, Tae-Hyo;Shin, Chan-Ki
    • Journal of environmental and Sanitary engineering
    • /
    • v.22 no.3
    • /
    • pp.13-26
    • /
    • 2007
  • Changes in the characteristics of dissolved organic matter was studied at selected stations in the Nakdong river basin using physical and chemical methods. Characteristics of dissolved organic matters were analysed and assessed. Production of disinfection byproducts were also investigated. 1. Result of relatedness study among each items of analyses showed that relatedness on BOD values were highest with cattle excrement treatment facilities where there is no synthetic organic materials and relatedness on $COD_{Mn}$ were highest at the mainstream Nakdong river. In case of $COD_{Cr}$ (which has more oxidative power than $COD_{Mn}$), the values were higher in the sidestreams indicating the higher content of recalcitrant compounds. The relatedness values for the $UV_{254}$ also showed higher values in the sidestreams and treatment facilities than mainstream indicating the presence of organic aromatic compounds. 2. Ratio of DOC on total organic carbon were higher in the mainstream which is attributable to the influent particulate organic materials produced by agricultural activities. The values were 10-15% higher in the mainstream compared with sidestreams. 3. Result of biodegradability test indicate that concentrations of recalcitrant DOC were higher in the sidestreams than in the mainstream. The values of recalcitrant DOC were higher with the forest stream indicating the effect of soil oriented humic substances. 4. Result of THM production test carried out at 10 stations in the Nakdong river show that $CHCl_3$ was detected with the highest value and the value was highest at Waekwan station.

Effect of Winter Crop Cultivation on Soil Organic Carbon and Physico-chemical Properties Under Different Rice-forage Cropping Systems in Paddy Soil

  • Yun, Sun-Gang;Lee, Chang-Hoon;Ko, Byong-Gu;Park, Seong-Jin;Kim, Myung-Sook;Kim, Ki-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.335-340
    • /
    • 2016
  • Soil organic carbon plays an important role on soil physico-chemical properties and crop yields in paddy soil. However, there is little information on the soil organic carbon under different forage cultivation during winter season in rice paddy. In this study, we investigated the soil organic carbon and physico-chemical properties in 87 fields of paddy soil cultivated with Barley, rye, and Italian ryegrass (IRG) as animal feedstock during winter season. Organic carbon was 12.9, 14.3, and $16.9g\;C\;kg^{-1}$ in soil with barley, rye, and IRG cultivation, respectively. Among rice-forage cultivation systems, the rice+IRG cropping system was 19.5% higher than in the mono-rice cultivation. Bulk density ranged from 1.17 to $1.28g\;cm^{-3}$ irrespective of cropping systems, and had strongly negative correlation with the soil organic carbon in the rice+IRG cropping system. Carbon storage in rice+IRG cropping systems was average $29.6Mg\;ha^{-1}$ at 15 cm of soil depth, which was 20.4 and 10.3% higher than those of barley and rye cultivation. Increasing carbon storage in paddy soil contributed to the fertility for following rice cultivation. This results indicated that IRG cultivation during winter season could be an alternative and promising way to enhance soil organic carbon content and fertility of paddy soil.

Composition and Evaluation of the Thermal Desorption-Gas Chromatographic System for the Measurement of Volatile Organic Compounds in Air (공기 중 휘발성 유기화합물의 측정을 위한 열탈착-분석시스템의 구성 및 평가)

  • 이수형;송희남;김희갑
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.1
    • /
    • pp.63-71
    • /
    • 2002
  • The thermal desorption-gas chromatographic (TD-GC) system has been constructed for the measurement of volatile organic compounds. The thermal desortion unit is composed of four major parts: 1) the control part; 2) the thermal desorption part; 3) the focusing part; and 4) the injection part. The peltier element was introduced to the focusing part for the temperature of the focusing tube to reach-35$^{\circ}C$. The system was tested for the linearity of the calibration curves and reproducibility of instrumental analyses using some disinfection by-products (DBPs) and BTXs (benzene, toluene and p-xylene). The coefficients of determination (r$^2$) for all the calibration curves made were higher than 0.998, and the coefficients of variation (CV) for triplicate measurements were all within 10%. The system also has been tested for field applicability. The analysis of field samples showed that there was no breakthrough problem in the sampling system and that the system could be applied to field measurements.

Analysis of Design and Part Load Performance of Micro Gas Turbine/Organic Rankine Cycle Combined Systems

  • Lee, Joon-Hee;Kim, Tong-Seop
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1502-1513
    • /
    • 2006
  • This study analyzes the design and part load performance of a power generation system combining a micro gas turbine (MGT) and an organic Rankine cycle (ORC). Design performances of cycles adopting several different organic fluids are analyzed and compared with performance of the steam based cycle. All of the organic fluids recover greater MGT exhaust heat than the steam cycle (much lower stack temperature), but their bottoming cycle efficiencies are lower. R123 provides higher combined cycle efficiency than steam does. The efficiencies of the combined cycle with organic fluids are maximized when the turbine exhaust heat of the MGT is fully recovered at the MGT recuperator, whereas the efficiency of the combined cycle with steam shows an almost reverse trend. Since organic fluids have much higher density than steam, they allow more compact systems. The efficiency of the combined cycle, based on a MGT with 30 percent efficiency, can reach almost 40 percent. hlso, the part load operation of the combined system is analyzed. Two representative power control methods are considered and their performances are compared. The variable speed control of the MGT exhibits far better combined cycle part load efficiency than the fuel only control despite slightly lower bottoming cycle performance.

Higher Order Polymer Architectures Containing Ethylene and Functionalized Comonomers

  • Bazan, Guillermo;Diamanti, Steve;Coffin, Robert;Hotta, Atsushi;Khanna, Vikram;Fredrickson, Glenn;Kramer, Ed
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.156-157
    • /
    • 2006
  • Quasi-living polymerization conditions for the copolymerization of ethylene and functionalized norbornenes can be achieved by using an initiator system comprising $[N-(2,6-diisopropylphenyl)-2-(2,6-diisopropylphenylimino)-propanamidato-{\kappa}^2N,O]Ni({\Box}^1-CH_2Ph)(PMe_3)\;and\;Ni(COD)_2$. It is possible with this polymerization system to obtain block-copolymer and tapered structures. The latter form microdomains similar to those of standard block co-polymers. The mechanism of the reaction will also be discussed.

  • PDF

Removal of Organic Matter and Nutrient in Swine Wastewater Using a Membrane System

  • Lim, Seung Joo;Kim, Sun Kyong;Lee, Yong-gu;Kim, Tak-Hyun
    • Journal of Radiation Industry
    • /
    • v.6 no.1
    • /
    • pp.75-82
    • /
    • 2012
  • Swine wastewater was treated using a unique sequence of ion exchange membrane bed system (IEBR). Organic matter and nutrient in swine wastewater was pre-treated by electron beam irradiation. The optimal dose for solubilization of organic matter in swine wastewater ranged from 20 kGy to 75 kGy. The carbohydrates, proteins, and lipids were investigated as the solubilized organic fraction of swine wastewater and proteins and lipids mainly contained of the solubilized organic matter. The solubilization of organic matter in swine wastewater was affected by the combination effect of temperature and a dose. The average chemical oxygen demand (COD) removal efficiency under room temperature conditions was 67.1%, while that under psychrophilic conditions was 54.6%. For removal of ammonia, the removal efficiency decreased from 63.6% at $23^{\circ}C$ to 33.5% $16.8^{\circ}C$. On the other hand, the removal of phosphorus was not a function of temperature. Struvite was one of main mechanisms in anaerobic condition.