• Title/Summary/Keyword: Organic substrates

Search Result 626, Processing Time 0.028 seconds

Integrated Circuits, Optics, and Sensors Using Organic Field Effect Transistors and Photodetectors

  • Kymissis, Ioannis
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1279-1282
    • /
    • 2008
  • Organic field effect transistors are excellent candidates for addressing and local amplification elements for large area electronics because they can easily be processed at low temperatures on essentially arbitrary substrates. We present the use of these devices in an active matrix photodetector and as a buffer for a strain sensor.

  • PDF

Yield, Nutrient Characteristics, Ruminal Solubility and Degradability of Spent Mushroom (Agaricus bisporus) Substrates for Ruminants

  • Kim, Y.I.;Cho, W.M.;Hong, S.K.;Oh, Y.K.;Kwak, W.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.11
    • /
    • pp.1560-1568
    • /
    • 2011
  • This study was conducted to evaluate the yield, nutrient characteristics, ruminal solubility, degradability and disappearance of spent mushroom (Agaricus bisporus) substrates for ruminants. The annual yield of spent Agaricus bisporus substrates was measured to be about 210,000 tons (M/T) in South Korea. The surface soil-removed spent substrates had nutritional characteristics of high crude ash (375 g/kg) and Ca (32 g/kg), medium protein (134 g/kg CP), and high fiber (384 g/kg NDF on a DM basis). Compared with initial mushroom substrates, spent mushroom substrates had twice higher (p<0.0001) CP content and 22.0% lower (p<0.0001) NDF content on an organic matter basis. Compared with raw rice straw, spent rice straw had much higher (p<0.05) predicted ruminal degradabilities and disappearances of DM and CP and a little lower (p<0.05) predicted degradability and disappearance of NDF. In conclusion, the general feed-nutritional value of spent mushroom (Agaricus bisporus) substrates appeared to improve after cultivation of mushrooms.

Effects of organic additives on YBCO coated conductor prepared by MOD-TFA method (유기첨가제가 MOD-TFA법으로 제조된 YBCO에 미치는 영향)

  • 김영국;유재무;고재웅;허순영
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.90-92
    • /
    • 2003
  • Effects of organic additives on YBCO coated conductor prepared by MOD-TFA method were investigated. YBCO thin films were deposited on (100)-oriented single crystalline LaAlO$_3$substrates by conventional MOD-TFA process. The microstructures of YBCO thin films show labyrinth-like patterns. The origin of this microstructure was delineated by compositional inhomogeneity during the pyrolysis process of MOD process and it was shown that organic additives changes the microstructure and texture development of grown YBCO films

  • PDF

Low Temperature PECVD for SiOx Thin Film Encapsulation

  • Ahn, Hyung June;Yong, Sang Heon;Kim, Sun Jung;Lee, Changmin;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.198.1-198.1
    • /
    • 2016
  • Organic light-emitting diode (OLED) displays have promising potential to replace liquid crystal displays (LCDs) due to their advantages of low power consumption, fast response time, broad viewing angle and flexibility. Organic light emitting materials are vulnerable to moisture and oxygen, so inorganic thin films are required for barrier substrates and encapsulations.[1-2]. In this work, the silicon-based inorganic thin films are deposited on plastic substrates by plasma-enhanced chemical vapor deposition (PECVD) at low temperature. It is necessary to deposit thin film at low temperature. Because the heat gives damage to flexible plastic substrates. As one of the transparent diffusion barrier materials, silicon oxides have been investigated. $SiO_x$ have less toxic, so it is one of the more widely examined materials as a diffusion barrier in addition to the dielectric materials in solid-state electronics [3-4]. The $SiO_x$ thin films are deposited by a PECVD process in low temperature below $100^{\circ}C$. Water vapor transmission rate (WVTR) was determined by a calcium resistance test, and the rate less than $10.^{-2}g/m^2{\cdot}day$ was achieved. And then, flexibility of the film was also evaluated.

  • PDF

Selective Vapor-Phase Deposition of Conductive Poly(3,4-ethylenedioxythiophene) Thin Films on Patterned FeCl3 Formed by Microcontact Printing

  • Lee, Bo H.;Cho, Yeon H.;Shin, Hyun-Jung;Kim, Jin-Yeol;Lee, Jae-gab;Lee, Hai-won ;Sung, Myung M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1633-1637
    • /
    • 2006
  • We demonstrate a selective vapor-phase deposition of conductive poly(3,4-ethylenedioxythiophene) (PEDOT) thin films on patterned $FeCl_3$. The PEDOT thin films were grown on various substrates by using the vapor-phase polymerization of ethylenedioxythiophene (EDOT) with $FeCl_3$ catalytic layers at 325 K. The selective deposition of the PEDOT thin films using vapor-phase polymerization was accomplished with patterned $FeCl_3$ layers as templates. Microcontact printing was done to prepare patterned $FeCl_3$ on polyethyleneterephthalate (PET) substrates. The selective vapor-phase deposition is based on the fact that the PEDOT thin films are selectively deposited only on the regions exposing $FeCl_3$ of the PET substrates, because the EDOT monomer can be polymerized only in the presence of oxidants, such as $FeCl_3$, Fe($CIO_4$), and iron(II) salts of organic acids/inorganic acids containing organic radicals.

Improvement of Mchanical Property of Indium-tin-oxide Films on Polymer Substrates by using Organic Buffer Layer

  • Park, Sung-Kyu;Han, Jeong-In;Moon, Dae-Gyu;Kim, Won-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.2
    • /
    • pp.32-37
    • /
    • 2002
  • This paper gives the basic mechanical properties of indium-tin-oxide (ITO) films on polymer substrates which are exposed to externally and thermally induced bending force. By using modified Storney formula including triple layer structure and bulge test measuring the conductive changes of patterned ITO islands as a function of bending curvature, the mechanical stability of ITO films on polymer substrates was intensively investigated. The numerical analyses and experimental results show thermally and externally induced mechanical stresses in the films are responsible for the difference of thermal expansion between the ITO film and the substrate, and leer substrate material and its thickness, respectively. Therefore, a gradually ramped heating process and an organic buffer layer were employed to improve the mechanical stability, and then, the effects of the buffer layer were also quantified in terms of conductivity-strain variations. As a result, it is uncovered that a buffer layer is also a critical factor determining the magnitude of mechanical stress and the layer with the Young's modulus lower than a specific value can contribute to relieving the mechanical stress of the films.

Flip Chip Assembly on PCB Substrates with Coined Solder Bumps (코인된 솔더 범프를 형성시킨 PCB 기판을 이용한 플립 칩 접속)

  • 나재웅;백경욱
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.21-26
    • /
    • 2002
  • Solder flip chip bumping and subsequent coining processes on PCB were investigated to solve the warpage problem of organic substrates for high pin count flip chip assembly by providing good co-planarity. Coining of solder bumps on PCB has been successfully demonstrated using a modified tension/compression tester with height, coining rate and coining temperature variables. It was observed that applied loads as a function of coined height showed three stages as coining deformation : (1) elastic deformation at early stage, (2) linear increase of applied load, and (3) rapid increase of applied load. In order to reduce applied loads for coining solder bumps on PCB, effects of coining process parameters were investigated. Coining loads for solder bump deformation strongly depended on coining rates and coining temperatures. As coining rates decreased and process temperature increased, coining loads decreased. Among the effect of two factors on coining loads, it was found that process temperature had more significant effect to reduce applied coining loads during the coining process. Lower coining loads were needed to prevent substrate damages such as micro-via failure and build-up dielectric layer thickness change during applying loads. For flip chip assembly, 97Pb/Sn flip chip bumped devices were successfully assembled on organic substrates with 37Pb/Sn coined flip chip bumps.

  • PDF

Coating Properties of a TPD Organic Hole-transporting Layer Deposited using a Continuous slot-die Coating Method (연속 slot-die 코팅법을 이용한 TPD 유기 정공수송층의 코팅 특성 분석)

  • Chung, Kook Chae;Kim, Young Kuk;Choi, Chul Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.363-368
    • /
    • 2010
  • N,N'-diphenyl-N,N'-bis(3-methylphenyl)1-1' biphenyl-4,4'-diamine (TPD) hole-transporting layers were deposited using a continuous slot-die coating method on ITO/PET flexible substrates. It is crucial that the substrates have a very smooth surface with a RMS roughness of less than 2 nm for the deposition of semiconductor nanocrystals or Quantum Dots. The parameters of the slot-die coating, including the solution concentration of the TPD, the gap between the slot-die and the substrates, and the coating speed were controlled in these experiments. To obtain full coverage of the TPD films on the ITO/PET substrates (40 mm wide and several meters long), the injection rates of the TPD solution were increased proportional to the coating speed of the flexible substrates. Additionally, the injection rates must be increased as the gap distance changes from 400 to 600 ${\mu}m$ at the same coating speed. A RMS surface roughness of less than 2 nm was obtained, in contrast to bare ITO/PET substrates, at 13 nm, as the coating speed and gap distance increased.

The Rffect of Sludge Acclimation Conditions and Contact Load on Phosphorus and Organic Substrates Behanio Under Anaerobic Conditions (슬러지 순화조건과 접촉부하가 혐기상태에서 인과 유기물의 거동에 미치는 영향)

  • 박동근
    • Journal of Environmental Science International
    • /
    • v.3 no.4
    • /
    • pp.427-437
    • /
    • 1994
  • Batch experiments were performed to evaluate the effect of sludge acclimation and contact load on the behavior of phosphorus and organic substrates under anaerobic conditions. Four different sludges were acclimated in the sequencing batch reactors operated by intermittent aeration. All the experiments performed in a bench scale have shown the following results: 1. The unreleaseable phosphorus contents for four different sludges are the range of 16 mg P/g SS to 24 mg P/g SS, depending on the sludge acclimation conditions. 2. All the specific substrate uptake rates(SSUR) are expressed in the first order equation for releaseable phosphorus contents. The reaction rate coefficient k, has the values of 4.0, 8.9, and 13.8 mg COD/mg P/hr, depending on the contact load and slut식e species. 3. As reaction proceeds, the ratios of $\delta$P to -$\delta$COD at high contact load are almost constant in the range of 0.10 to 0.14, but at low contact load, they increase from 0.08 to 0.27.

  • PDF