• Title/Summary/Keyword: Organic substrates

Search Result 626, Processing Time 0.026 seconds

Effects of Substrate Sizes and Organic Contents on Larval Settlement and Growth in the Early Stage of the Polychaete Marphysa sanguinea (바위털갯지렁이(Marphysa sanguinea) 유생의 착저와 초기 성장에 미치는 기질 크기 및 유기물 함량)

  • Phoo, War War;Kim, Sung Kyun;Kim, Chang-Hoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.1
    • /
    • pp.132-138
    • /
    • 2020
  • Marphysa sanguinea is the most well-known polychaete species with a high economic value. However, this species has a high mortality in the early rearing stage of aquaculture. This study was conducted to find out the optimal substrate size and organic contents for the growth and survival rate of M. sanguinea larvae and juveniles. It was observed that the smaller grain size (<Ø 0.063 mm) and high organic contents (5-10%) induced settlement and reduced settlement time of larvae. Moreover, the growth and survival rate of larvae reached high levels at Ø 0.004-0.016 mm of grain sizes and 5-7.5% of organic contents as advantageous substrates for settlement. The survival rate of juveniles reached over 90% in less than Ø 0.016 mm substrate on 15-day experiment for different grain sizes of substrates. These results indicated that substrate compositions of less than Ø 0.016 mm of sand size and 5-7.5% of organic contents in mud will enhance the productivity of M. sanguinea at the early stage.

Dyeing properties of cationic dye on polyamide fibers using syntan treatment (Syntan 처리에 의한 폴리아마이드 섬유의 캐티온 염료 염착특성)

  • Park, Young-Min;Kim, Byung-Soon;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.19 no.1 s.92
    • /
    • pp.12-16
    • /
    • 2007
  • Exhaustion increase using cationic dyes on polyamide fibers are not easy work due to the limited amounts of the functional end groups(-COOH) in the substrates. Therefore, to enhance dye exhaustion, polyamide fibers are required to be modified onto desired surface properties of the fibers using anionic bridging agent. In this study, synthetic tanning agent for pre-treatment finishing and cationic dye(berberine chloride) for dyeing of polyamide fibers were used. For surface modification, polyamide fibers were pre-treated with synthetic tanning agent at various concentrations and temperatures. The increased concentration and temperatures of synthetic tanning agents had resulted in exhaustion increase. The modified polyamide substrates skewed increased cationic dyeing exhaustions and the corresponding dyeing results from treated samples represented higher exhaustion properties than those of non-treated counterpart. The increased dyeing effects of cationic dye can be attributed to the supplied ionic interaction and electrostatic attraction sites on the surface of polyamide substrates.

Effects of Ascorbic Acid, Thiols and Organic Acid on Polyphenol Oxidase Activity (아스코르빈산과 티올류 및 유기산이 폴리페놀 화효소 활성에 미치는 영향)

  • 김안근;김유경
    • YAKHAK HOEJI
    • /
    • v.45 no.4
    • /
    • pp.387-396
    • /
    • 2001
  • The effects of ascorbic acid, thiols such as cysteine, n-acetyl-ι-cyteine, glutathione, thiourea, 2-mercaptoethanol and dithiotreithol and organic acids such as magic acid, citric acid, glycolic acid, taurine and kojic acid on polyphenol oxidate (PPO) activity were studied in order to establish if it reacts with oxidized product and/or directly inhibits the enzyme. To investigate the mechanism, the quantification of t-butylcatechol and 4-methylcatechol (phenolic compounds) as substates, their oxidized product and sulphydryl colorless additional compounds were determined by high performance liquid chromatograph (HPLC) method. Chromatographic results indicate that ascorbic acid, organic acids and lower level of cysteine reduced oxidized product of substrates back to their respective positions uf ο-diphenols. On the other hand, other thiols and high level of cysteine reacted with oxidative product of ο-diphenols and then produced sulphydryl colorless compounds. Cysteine apperars to have two types of mechanism of actions in the formation of oxidative products of substrates depending on its concentration; ascorbic acid-type and other thiols-types. The effect of ascorbic acid with thiols on polyphenol oxidase was determined by same method. Chromatographic results indicate that ascorbic acid was more reactive with oxidized product of substrates than thiols.

  • PDF

Flexible Thin Film Encapsulation and Planarization Effectby Low Temperature Flowable Oxide Process

  • Yong, Sang Heon;Kim, Hoonbea;Chung, Ho Kyoon;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.431-431
    • /
    • 2013
  • Flexible Organic Light Emitting Diode (OLED) displays are required for future devices. It is possible that plastic substrates are instead of glass substrates. But the plastic substrates are permeable to moisture and oxygen. This weak point can cause the degradation of fabricated flexible devices; therefore, encapsulation process for flexible substrate is needed to protect organic devices from moisture and oxygen. Y.G. Lee et al.(2009) [1] reported organic and inorganic multilayer structure as an encapsulation barrier for enhanced reliability and life-time.Flowable Oxide process is a low-temperature process which shows the excellent gap-fill characteristics and high deposition rate. Besides, planarization is expected by covering dust smoothly on the substrate surface. So, in this research, Bi-layer structured is used for encapsulation: Flowable Oxide Thin film by PECVD process and Al2O3 thin film by ALD process. The samples were analyzed by water vapor transmission rate (WVTR) using the Calcium test and film cross section images were obtained by FE-SEM.

  • PDF

Organic Light Emitting Transistors for Flexible Displays

  • Kudo, Kazuhiro;Endoh, Hiroyuki;Watanabe, Yasuyuki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.137-140
    • /
    • 2005
  • Organic light emitting transistors (OLET) which are vertically combined with the organic static induction transistor (OSIT) and organic light emitting diode (OLED) are fabricated and the device characteristics are investigated. High luminance modulations by relatively low gate voltages are obtained. In order to realize the flexible electronic circuits and displays, we have fabricated OSIT on plastic substrates. The OSIT fabricated on plastic substrate show almost same characteristics comparing with those of nonflexible OSIT on glass substrate. The OLET described here is a suitable element for flexible sheet displays.

  • PDF

Synthesis of the photochromic and electrochromic dyes and their sensible properties (I) - Dyeing application with photochromic moiety to the fiber substrate- (광변색성 및 전기변색성 색소의 합성 및 특성(I) -광변색성 특성의 섬유소재에의 응용-)

  • Son Young-A;Park Young-Min;Kim Byung-Soon;Kim Sung-Hoon
    • Textile Coloration and Finishing
    • /
    • v.18 no.2 s.87
    • /
    • pp.24-30
    • /
    • 2006
  • The photosensitive spiroxazine compound and the electrosensitive viologen compound were prepared to examine their practical application feasibilities and behaviors. These dyes represent corresponding chromism effects related to their own characteristics of the dye molecules. Thus, the prepared dyes were characterized and their absorption spectra were also investigated. Besides, an interest on direct spiroxazine exhaustion to the polyamide substrates and its photochromic effects within the fiber molecules were determined. The photochromic reaction on the substrates was clearly observed and its reversible decoloration behaviors responded.

Substrate Effects on Biological Excess Phosphorus Removal (유기물질이 인제거 특성에 미치는 영향)

  • Jun, Hang-Bae;Lee, Eyung-Taek;Shin, Hang-Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.2
    • /
    • pp.25-34
    • /
    • 1994
  • In this research, investigations were made on the effect of type and load of organic substrate on phosphorus release. Reactors of three different sizes were operated, being fed on five kinds of organic substrates. The quantitative analyses were made on phosphorus release and substrate utilization under anaerobic condition. The molar ratios of the uptaken organic substrate to the released phosphorus were 0.5 with acetate, 0.6 with glucose, 0.8 with glucose/acetate, and 1.2 with glucose/acids, respectively. The phosphorus release was inhibited at the higher organic load than the normal at stead state. Both acetate and acids/glucose enhanced phosphorus release- as well as uptake-rate, however, the complete phosphorus removal was achieved after the microbial adaptation to the new environment. In case with acetate, operation was hampered by the poor sludge settleability and phosphorus uptake was not enough although the phosphorus release was active. But with milk/starch, the phosphorus release and uptake was well developed even though phosphorus release was not comparatively high. From this study, it was concluded that organic substrates, such as glucose seemed to be converted fatty acids after fast bio-sorption, followed by concurrent uptake of these acids by excess phosphorus removing bacteria.

  • PDF

Electroless Deposition and Surface-Enhanced Raman Scattering Application of Palladium Thin Films on Glass Substrates

  • Shin, Kuan Soo;Cho, Young Kwan;Kim, Kyung Lock;Kim, Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.743-748
    • /
    • 2014
  • In this work, we describe a very simple electroless deposition method to prepare moderate-SERS-active nanostructured Pd films deposited on the glass substrates. To the best of our knowledge, this is the first report on the one-pot electroless method to deposit Pd nanostructures on the glass substrates. This method only requires the incubation of negatively charged glass substrates in ethanol-water mixture solutions of $Pd(NO_3)_2$ and butylamine at elevated temperatures. Pd films are then formed exclusively and evenly on glass substrates. Due to the aggregated structures of Pd, the SERS spectra of benzenethiol and organic isonitrile could be clearly identified using the Pd-coated glass as a SERS substrate. This one-step fabrication method of Pd thin film on glass is cost-effective and suitable for the mass production.

Recognition of substrates by membrane potential

  • Yun, Kyu-sik;Tak, Tae-moon;Kim, Jong-ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.31-35
    • /
    • 1998
  • 1. INTRODUCTION : Recognition and binding of organic substrates by biological molecules are of vital importance in biophysics and biophysical chemistry. Most studies of the application focused on the development of biosensors, which detected reaction products generated by the binding between enzymes and substrates. Other types of biosensors in which membrane proteins (e.g., nicotinic acetylcholine receptor, auxin receptor ATPase, maltose bining protein, and glutmate receptor) were utilized as a receptor function were also developed. In the previous study[1], the shifts in membrane potential, caused by the injection of substrates into a permeation cell, were measured using immobilized glucose oxidase membranes. It was suggested that the reaction product was not the origin of the potential shifts, but the changes in the charge density in the membrane due to the binding between the enzyme and the substrates generated the potential shifts. In this study, $\gamma$-globulin was immobilized (entrapped) in a poly($\gamma$-amino acid) network, and the shifts in the membrane potential caused by the injection of some amino acids were investigated.

  • PDF

Improved performance in flexible organic solar cells via optimization of highly transparent silver grid/graphene electrodes

  • Cha, Myoung Joo;Kim, Sung Man;Kang, Ju Hwan;Kang, Seong Jun;Seo, Jung Hwa;Walker, Bright
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.152-152
    • /
    • 2016
  • We studied the effect of the silver grid size on graphene transparent conducting films for flexible organic solar cells (OSCs). The silver grid was used an assistant layer of the graphene to reduce the sheet resistance of substrates. Silver grid with various graphene sizes for optimizing transmittance and sheet resistance of substrates were fabricated on polyethylene terephthalate (PET) substrates to form the hybrid films. The optimized grid geometry on the single layer graphene (SLG) was the grid dimension $200{\mu}m{\times}200{\mu}m{\times}50nm{\times}2{\mu}m$ (length ${\times}$ width ${\times}$ height ${\times}$ linewidth), where the sheet resistance was $55.73{\Omega}/square$ with the average transmittance of ~ 92.83 % at 550 nm. The properties of the OSCs fabricated using SLG with optimized silver grids on PET substrates show a short circuit current of $10.9mA/cm^2$, an open circuit voltage of 0.58 V, a fill factor of 60.8 %, and a power conversion efficiency (PCE) of 3.9 %. The PCE was improved about 91% than that of the OSCs using the SLG without the silver grid. These results demonstrate that the optimized grid geometry to the based on the graphene transparent electrodes contribute to improving the performance of OSCs.

  • PDF