• 제목/요약/키워드: Organic semiconductor

검색결과 568건 처리시간 0.03초

Tandem white organic light emitting diodes comprising of red, green, blue emission

  • Yang, Jung-Jin;Suman, C.K.;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.820-822
    • /
    • 2009
  • Tandem white organic light emitting diodes (WOLEDs) are fabricated by using a transparent interconnecting layer of Al:LiF composite/molybdenum oxides ($MoO_3$). We demonstrate two types of tandem WOLEDs consisting of two color emissions (red and blue emission) and three color emissions (red, green and blue emission). Tandem WOLED consisting of three color emission shows higher external quantum efficiency and current efficiency.

  • PDF

Novel Approaches of Modified Poly (4-vinylphenol) for Low Hysteresis Organic Thin Film Transistors

  • Kim, Hyoung-Jin;Kim, Doo-Hyun;Kim, Byung-Uk;Kim, We-Yong;Kim, Ho-Jin;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1305-1307
    • /
    • 2009
  • We have investigated the new modification of poly (vinyl phenol) (PVP) for low hysteresis organic thin film transistors (OTFTs). In order to suppression of hysteresis phenomenon, synthesized various backbone structure polymeric gate dielectric. The modified polymeric dielectric was synthesized by inducing ringshape phenol backbone structure instead of conventional chain. We could be observed that relieved hysteresis and excellent air stability from ring-shape phenol backbone structure.

  • PDF

Estimation of Electrical Parameters of OD Organic Semiconductor Diode from Measured I-V Characteristics

  • Moiz, Syed Abdul;Ahmed, Mansoor M.;Karimov, Kh. S.
    • ETRI Journal
    • /
    • 제27권3호
    • /
    • pp.319-325
    • /
    • 2005
  • In this paper the effect of temperature on the electrical properties of organic semiconductor disperse orange dye 25 (OD) have been examined. Thin films of OD have been deposited on $In_{2}O_{3}$ substrates using a centrifugal machine. DC current-voltage (I-V) characteristics of the fabricated devices $(Al/OD/In_{2}O_{3)$ have been evaluated at varying temperatures ranging from 40 to $60^{\circ}C$. A rectification behavior in these devices has been observed such that the rectifying ratio increases as a function of temperature. I-V characteristics observed in $Al/OD/In_{2}O_{3)$ devices have been classified as low temperature $({\leq} 50^{\circ}C)$ and high temperature characteristics (approximately $60^{\circ}C$). Low temperature characteristics have been explained on the basis of the charge transport mechanism associated with free carriers available in OD, whereas high temperature characteristics have been explained on the basis of the trapped space-charge-limited current. Different electrical parameters such as traps factor, free carrier density, trapped carrier density, trap density of states, and effective mobility have been determined from the observed temperature dependent I-V characteristics. It has been shown that the traps factor, effective mobility, and free carrier density increase with increasing values of temperature, whilst no significant change has been observed in the trap density of states.

  • PDF

유기 반도체 CuPccp LB초박막의 제작 및 특성 (Fabrication and Properties of Organic Semiconductor CuPccp LB Thin Film)

  • 조민재;쑤양싸이양;이진수;안다현;정치섭
    • 센서학회지
    • /
    • 제28권1호
    • /
    • pp.23-29
    • /
    • 2019
  • A copper tetracumylphenoxy phthalocyanine (CuPccp) thin film was formed on an organic insulator film by Langmuir-Blodgett (LB) deposition for gas sensor fabrication. To increase the reproducibility of film transfer, stearyl alcohol was used as a transfer promoter. The structural properties of the CuPccp layers were optically monitored through attenuated total reflection and polarization-modulated ellipsometry techniques. The average thickness of a single layer of the CuPccp LB film was measured to be 2.5 nm. Despite the role of the transfer promoter, the stability of the layer transfer was not sufficient to ensure homogeneity of the LB film. This was probably due to the presence of aggregates in the molecular structure of the CuPccp LB film. Nevertheless, copper phthalocyanine polymorphism can be greatly suppressed by the LB arrangement, which appears to contribute to the improvement of electrical conductivity. The p-type semiconductor characteristics were confirmed by Hall measurements from the CuPccp LB films.

Performance Improvement of All Solution Processable Organic Thin Film Transistors by Newly Approached High Vacuum Seasoning

  • Kim, Dong-Woo;Kim, Hyoung-Jin;Lee, Young-Uk;Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.470-470
    • /
    • 2012
  • Organic thin film transistors (OTFTs) backplane constitute the active elements in new generations of plastic electronic devices for flexible display. The overall OTFTs performance is largely depended on the properties and quality of each layers of device material. In solution based process of organic semiconductors (OSCs), the interface state is most impediments to preferable performance. Generally, a threshold voltage (Vth) shift is usually exhibited when organic gate insulators (OGIs) are exposed in an ambient air condition. This phenomenon was caused by the absorbed polar components (i.e. oxygen and moisture) on the interface between OGIs and Soluble OSCs during the jetting process. For eliminating the polar component at the interface of OGI, the role of high vacuum seasoning on an OGI for all solution processable OTFTs were studied. Poly 4-vinly phenols (PVPs) were the material chosen as the organic gate dielectric, with a weakness in ambient air. The high vacuum seasoning of PVP's surface showed improved performance from non-seasoning TFT; a $V_{th}$, a ${\mu}_{fe}$ and a interface charge trap density from -8V, $0.018cm^2V^{-1}s^{-1}$, $1.12{\times}10^{-12}(cm^2eV)^{-1}$ to -4.02 V, $0.021cm^2V^{-1}s^{-1}$, $6.62{\times}10^{-11}(cm^2eV)^{-1}$. These results of OTFT device show that polar components were well eliminated by the high vacuum seasoning processes.

  • PDF

유기소자의 신뢰성에 영향을 주는 유해 자외선을 차단하기 위한 ALD기반 기능성 브래그반사경 구조 (ALD-based Functional Bragg Reflector Structure to Block Harmful Ultraviolet Rays that Affect the Reliability of Organic Devices)

  • 김현우;이형준;장승미;윤형준;이도균;이용민;박상연;정지훈;임석준;권정현
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.103-107
    • /
    • 2023
  • To solve the reliability problem of organic devices that are often used outdoors, multifunctional gas barriers that block reactive gases such as moisture and oxygen and reflect harmful light such as ultraviolet rays are needed. In this study, ALD nanolaminate-based optically functional n-DBR was developed to overcome the poor gas permeability of polymer substrates and protect organic devices from harmful light. n-DBR not only achieved a WVTR of 8.76 × 10-6 g·m-2·day-1, but also showed a visible light transmittance of 94.3% and an ultraviolet ray blocking ability of 2.67%. In particular, n-DBR based on a nanolaminate structure maintained its permeability characteristics even in a high temperature and high humidity environment despite being used as a layer of Al2O3. This functional barrier Structure can not only be used as a functional encapsulation barrier for the reliability of organic devices, but can also be used as a tinting film for vehicles.

  • PDF

Electronic structure of potassium-doped copper phthalocyanine studied by photoemission spectroscopy and density functional calculations

  • 임영지;김종훈;지동현;조상완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.142.2-142.2
    • /
    • 2016
  • The metal intercalation to an organic semiconductor is of importance since the charge transfer between a metal and an organic semiconductor can induce the highly enhanced conductivity for achieving efficient organic electronic devices. In this regard, the changes of the electronic structure of copper phthalocyanine (CuPc) caused by the intercalation of potassium are studied by ultraviolet photoemission spectroscopy (UPS) and density functional theory (DFT) calculations. Potassium intercalation leads to the appearance of an intercalation-induced peak between the highest molecular occupied orbital (HOMO) and the lowest molecular unoccupied orbital (LUMO) in the valence-band spectra obtained using UPS. The DFT calculations show that the new gap state is attributed to filling the LUMO+1, unlike a common belief of filling the LUMO. However, the LUMO+1 is not conductive because the ${\pi}$-conjugated macrocyclic isoindole rings on the molecule do not make a contribution to the LUMO+1. This is the origin of a metal-insulator transition through heavily potassium doped CuPc.

  • PDF

OLED 증착용 서큘러소스의 열적성능 해석 (Thermal Performance Analysis of Circular Source for OLED Vapor Deposition)

  • 주영철;한충환;엄태준;이상욱;김국원
    • 반도체디스플레이기술학회지
    • /
    • 제6권4호
    • /
    • pp.39-42
    • /
    • 2007
  • Temperature distribution of the circular heat source was studied by analyzing the heat transfer of the environment of the circular source for OLED. Circular nozzle source was used to fabricate thin organic layer as the organic material in it was heated, vaporized and deposited to the large size panel. A modified heater structure of circular source has been suggested. The results of numerical analysis shows that the modified heater structure can use 15% more powder in a batch than the original heater structure does. Moreover, the modified heater structure can improve the uniformity of organic vapor deposition by controlling the temperature.

  • PDF

Effect of Dodecane on the Surface Structure and the Electronic Properties of Pentacene on Modified Si (001)

  • Kim, Beom-sik;Kang, Hee Jae;Seo, Soonjoo;Park, Nam Seok
    • Applied Science and Convergence Technology
    • /
    • 제25권2호
    • /
    • pp.28-31
    • /
    • 2016
  • The structural and the electronic properties of pentacene on modified Si (001) were investigated using scanning tunneling microscopy (STM), atomic force microscopy (AFM) and ultraviolet photoelectron spectroscopy (UPS). Dodecane was used to modify Si (001) substrates and then pentacene was deposited on dodecane/Si (001). Our STM results show a uniform distribution of aggregated dodecane molecules all over the clean Si (001). The surface structure of pentacene on dodecaene/Si (001) examined by AFM is analogous to that of pentacene on $SiO_2$. The UPS data showed that the work function of pentacene on clean Si (001) and pentacene on modified Si (001) with dodecane was 6.41 and 5.57 eV, respectively. Our results prove that dodecane results in the work function difference between pentacene on clean Si (001) and pentacene on dodecane/Si (001).

유기 분자빔 성막법을 이용한 $\alpha$-Sexithieny1 박막의 성장 및 특성 연구 (A study on the growth and characterization of $\alpha$ -Sexithienyl thin films by OMBD(Organic Molecular Beam Deposition) technique)

  • 박용인;박주강;권오관;김영관;최종선;신동병;손병청;강도열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 추계학술대회 논문집
    • /
    • pp.187-190
    • /
    • 1996
  • Conducting polymers have band structures similar to those of inorganic semiconductors such as silicon. Several electronic devices have been constructed with conjugated polymers, mainly Schottky diodes and Metal-Insulator-Semiconductor Field-Effect Transistors (MISFET's). Organic semiconductor has been reported as active materials in MISFET's.$^{1.4}$ In our laboratory, $\alpha$-Sexithiencyl ($\alpha$-6T) has been synthesized and purified by sublimation method. In this study, thin films of $\alpha$-Sexithienyl were prepared on various substrates in ultra-high vacuum chamber by vacuum evaporation method, so called OMBD(Organic Molocular Beam Deposition).$^{7.9}$ The $\alpha$-Sexithienyl thin films were deposited with various deposition conditions. The crystalline structure, and molecular orientation of these films have being studied by using UV/Vis. spectroscopy and X-Ray Diffractometry.

  • PDF