• Title/Summary/Keyword: Organic removal

Search Result 1,935, Processing Time 0.029 seconds

Dye removal from water using emulsion liquid membrane: Effect of alkane solvents on efficiency

  • Ghaemi, Negin;Darabi, Farzaneh;Falsafi, Monireh
    • Membrane and Water Treatment
    • /
    • v.10 no.5
    • /
    • pp.361-372
    • /
    • 2019
  • Effect of different alkane based solvents on the stability of emulsion liquid membrane was investigated using normal alkanes (n-hexane, n-heptane, n-octane and n-decane) under various operating parameters of surfactant concentration, emulsification time, internal phase concentration, volume ratio of internal phase to organic phase, volume ratio of emulsion phase to external phase and stirring speed. Results of stability revealed that emulsion liquid membrane containing n-octane as solvent and span-80 (5 % (w/w)) as emulsifying agent presented the highest amount of emulsion stability (the lowest breakage) compared with other solvents; however, operating parameters (surfactant concentration (5% (w/w)), emulsification time (6 min), internal phase concentration (0.05 M), volume ratio of internal phase to organic phase (1/1), volume ratio of emulsion phase to external phase (1/5) and stirring speed (300 rpm)) were also influential on improving the stability (about 0.2% breakage) and on achieving the most stable emulsion. The membrane with the highest stability was employed to extract acridine orange with various concentrations (10, 20 and 40 ppm) from water. The emulsion liquid membrane prepared with n-octane as the best solvent almost removed 99.5% of acridine orange from water. Also, the prepared liquid membrane eliminated completely (100%) other cationic dyes (methylene blue, methyl violet and crystal violet) from water demonstrating the efficacy of prepared emulsion liquid membrane in treatment of dye polluted waters.

Electro-Oxidation in Combination with Biological Processes for Removal of Persistent Pollutants in Wastewater: A Review

  • Navarro-Franco, Javier A.;Garzon-Zuniga, Marco A.;Drogui, Patrick;Buelna, Gerardo;Gortares-Moroyoqui, Pablo;Barragan-Huerta, Blanca E.;Vigueras-Cortes, Juan M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.1-18
    • /
    • 2022
  • Persistent organic pollutants (POPs) and emerging pollutants (EP) are characterized by their difficulty to be removed through biological oxidation processes (BOPs); they persist in the environment and could have adverse effects on the aquatic ecosystem and human health. The electro-oxidation (EO) process has been successfully used as an alternative technique to oxidize many kinds of the aforementioned pollutants in wastewater. However, the EO process has been criticized for its high energy consumption cost and its potential generation of by-products. In order to decrease these drawbacks, its combination with biological oxidation processes has been reported as a solution to reduce costs and to reach high rates of recalcitrant pollutants removal from wastewaters. Thus, the location of EO in the treatment line is an important decision to make, since this decision affects the formation of by-products and biodegradability enhancement. This paper reviews the advantages and disadvantages of EO as a pre and post-treatment in combination with BOPs. A perspective of the EO scale-up is also presented, where hydrodynamics and the relationship of A/V (area of the electrode/working volume of the electrochemical cell) experiments are examined and discussed.

Remediation of Contaminated Soil with Organic Contaminants using Microemulsion (마이크로이멀젼을 이용한 유기오염물로 오염된 지반의 정화)

  • Park, Ki-Hong;Kwon, Oh-Jung;Park, Jun-Boum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.597-604
    • /
    • 2003
  • In the soil washing process, the contaminants are usually removed by abrasion from soil particles using mechanical energy and water However, organic contaminants with low water solubility like polycyclic aromatic hydrocarbons (PAH) are remained on soil particles. Previous studies have shown that surfactant possessing amphipathic activity enhances the solubility of organic materials. For this reason solutions with surfactants have been used to improve removal of organic contaminants on soil washing process. But, in this manner, many problems were found like complete loss of surfactants and additional contamination by surfactant. The remediation method using microemulsion has been introduced to overcome these disadvantages. In this case, surfactants are recycled by phase separation of microemulsion after remediation. In microemulsion process, the surfactant will be recycled by phase separation of the microemulsion into a surfactant-rich aqueous phase and an oil phase after extraction. That is why remediation concept applying microemulsion as washing media has been Introduced. Suitable microemulsion have to be used in order to have the chance of refilling the soil after decontamination and to avoid any risk due to toxicity. The purpose of this research is to evaluate effect of microemulsion to remediation of contaminated soil. We performed test with various organic contaminants like Pyrene and BTEX, also compared efficiency of remediation in microemulsion process with soil washing

  • PDF

Dry Cleaning of Si Contact Hole using$UV/O_3$ Method ($UV/O_3$을 이용한 Si contact hole 건식세정에 관한 연구)

  • 최진식;고용득;구경완;김성일;천희곤
    • Electrical & Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.8-14
    • /
    • 1997
  • The UV/O$_{3}$ dry cleaning has been well known in removing organic molecules. The UV/O$_{3}$ dry cleaning method was performed to clean the Si wafer surfaces and contact holes contaminated by organic molecules such as residual PR. During the cleaning process, the Si surfaces were analyzed with X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM) and ellipsometer. When the UV/O$_{3}$ dry cleaning at 200'C was performed for 3 minutes, the residual photoresist was almost removed on Si wafer surfaces, but Si surfaces were oxidized. For UV/O$_{3}$ application of contact hole cleaning, the contact string were formed using the equipment of ISRC (Inter-university Semiconductor Research Center). Before Al deposition, UV/O$_{3}$ (at 200.deg. C) dry cleaning was performed for 3 minutes. After metal annealing, the specific contact resistivity was measured. Because UV/O$_{3}$ dry cleaning removed organic contaminants in contact holes, the specific contact resistivity decreased. Each contact hole size was different, but the specific contact resistivities were all much the same. Thus, it is expected that the UV/O$_{3}$ dry cleaning method will be useful method of removal of the organic contaminants at smaller contact hole cleaning.

  • PDF

The Fractionation Characteristics of Organic Matter in Pollution Sources and River (오염물질 배출원과 하천에서의 유기탄소 분포 특성)

  • Kim, Ho-Sub;Kim, Sang-Yong;Park, Jihyung;Han, Mideok
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.5
    • /
    • pp.580-586
    • /
    • 2017
  • The fractionation characteristics of organic matter were investigated in inflow and effluent of each other pollution sources and river. While the DOC/TOC ratio in the influent of public sewage treatment plant and livestock disposal facilities was above 0.58, the POC/TOC ratio of human livestock Night soil treatment plant and stormwater runoff was more than 0.7. The TOC removal efficiency of public sewage treatment plant and human livestock Night soil treatment plant were 88.5 % and 99.6 %, respectively. Although the concentration distribution of organic matter pollution most of total organic carbon (TOC) in effluent of pollution sources accounted for dissolved organic carbon (DOC) type (DOC/TOC ratio >0.89) and Refractory-DOC (RDOC)/TOC ratio was higher (>0.65). The fractionation characteristics of organic matter in river were similar with that of sewage treatment plant and TOC concentration showed the positive correlation with DOC ($r^2=0.93$) and RDOC ($r^2=0.89$) concentration. The decay rate of Labile DOC (LDOC) (avg. $0.128day^{-1}$) was higher than labile particulate organic carbon (LPOC) ($0.082day^{-1}$), while that of DOC ($0.008day^{-1}$) was lower than POC ($0.039day^{-1}$) (paired t-test, p < 0.001, n = 5). These study results suggested that it should consider important both TOC and DOC as the target indicator to control refractory organic matter in pollution sources.

Comparison of Removal Characteristics of Organic Matter, Nitrogen and Phosphorus in Suspended-Growth and Hybrid Processes with Hydraulic Retention Time (수리학적 체류시간에 따른 부유성장 미생물을 이용한 공정과 하이브리드 공정의 유기물, 질소 및 인 제거 특성 비교)

  • Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.15-25
    • /
    • 2006
  • This study was initiated to evaluate the effect of HRT(hydraulic retention time) on removal efficiencies of organic matter (C), nitrogen(N) and phosphorus(P) in municipal wastewater for suspenced-growth processes(MLE; Modified Ludzack-Ettinger) and hybrid process(Modified-Dephanox). M-Dephanox process was designed to improve the performance of Dephanox process on denitrification efficiency. As the results, removal efficiencies of C, N and P in M-Dephanox process, which is hybrid process, were higher than those in MLE, which is suspended-growth process. Especially, nitrification inhibition of MLE was observed more severely than M-Dephanox as hydraulic retention time was reduced from 6 hr to 3.5 hr. Nitrification in nitrification reactors on M-Dephanox, at short HRT, was so excellent that ammonia nitrogen removal efficiency in nitrification reactors of M-Dephanox was about 92% at 1.59 hr of HRT of nitrification reactors, however, nitrification in nitrification reactors on M-Dephanox was affected severely by organic matter entering to nitrification reactors from downstream settler. It was observed that reducing of HRT in whole process resulted from reducing of HRT in nitrification reactors on M-Dephanox.

A Study on the Removal of Dissolved Matter in Groundwater and Characteristics of Fouling using NF and RO (NF와 RO를 이용한 지하수중 용존성 물질의 제거와 막 오염의 특성에 관한 연구)

  • Gwon, Eun-Mi;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2205-2213
    • /
    • 2000
  • To investigate removal efficiency of dissolved matter by NF and RO, a pilot plant was operated for six months using groundwater treated by UF membrane. After the pilot plant operation, we performed autopsy test to identify characteristics of foulant attached on the membrane surface applying the used NF and RO in the pilot plant test. In autopsy test, we measured permeate flux and recovery rate of flux by chemical cleaning in each membrane. We also analyzed chemical cleaning disposal to examine component of foulant. Permeate flux of NF and RO1 showed rapid decline after 100 days of operation. Especially, reduction of specific flux in RO1 was more serious than in NF. Specific flux of RO2 with a low recovery rate resulted in gradual flux decline. Removal efficiencies of dissolved inorganic matters as a conductivity were 76.3%, 88.2% and 95.3% respectively for NF, RO1 and RO2, and RO2 presented the highest removal efficiency. And those of dissolved organic matters as TOC were about 80% for both NF and RO. The specific flux of membranes declined gradually from the feed water inlet to outlet of the membrane module and it showed that membrane fouling increased along the feed flow direction. Namely, concentration of pollutants became higher and volume of feed water was less as the feed flow approached to the outlet. It seemed that major foul ants were Ca consolidated into inorganic material and Si consolidated into organic material on the membrane surface. Fe was a great contribution to irreversible fouling. The SEM results indicated that the organic matter was attached to the first layer, closer to the membrane, and then inorganic matter with tetragonal shape layered over them. We could not observe biofouling because microorganism, which was cause of biofouling, was almost pretreated in UF membrane.

  • PDF

Application of Principle in Metal-Ligand Complexation to Remove Heavy Metals : Kind and Concentration Effects of Organic Ligands (금속-Ligand 착염형성에 의한 중금속(重金屬) 제거(除去) 방법(方法)에 관한 연구(硏究);유기 Ligand의 종류와 농도(濃度) 영향(影響))

  • Yang, Jae-E;Shin, Yong-Keon;Kim, Jeong-Je;Park, Jeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.3
    • /
    • pp.243-252
    • /
    • 1992
  • This research was conducted to investigate the influence of kind and concentration of organic ligands such as humic (HA) or fulvic acid (FA) on the removal of Cu or Pb from the aqueous solution employing the principles in metal-ligand complexation. Increasing HA concentration enhanced the efficiency of Cu or Pb removal, but there existed upper critical concentrations capable of forming maximum HA-metal complex. which ranged 53-289 and 42-315mg/L for Cu and Pb, respectively. At these concentrations. efficiency of removal was 70 to 95 % for Pb, but 13 to 65 % for Cu. Amounts of Cu and Pb which complexed with 100mg HA were estimated to be 7.5 and 34.1mg, respectively. FA-metal complex forming reactions were fitted significantly to the empirical models of Freundlich for Cu and Langmuir for Pb. Fulvic acid precipitated nearly 100% of Pb in solution, but formed precipitates with Cu in only 13 to 29%. Comparing organic ligands. HA had a higher removal efficiency for Cu but FA had such for Pb. Metalligand complex formation was differed from kinds and concentrations of corresponding ligands and metals. Results demonstrated that this principle has a strong potential to be employed for treating heavy metals in aqueous solution.

  • PDF

Ultrafiltration of Humic and Natural Water: Comparison of Contaminants Removal, Membrane Fouling, and Cleaning (휴믹산 용액 및 자연수의 한외여과: 제거율, 막오염 및 세척특성 비교)

  • Choo, Kwang-Ho;Nam, Mi-Yeon
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.65-74
    • /
    • 2008
  • NOM and fine particles are the main target materials in water treatment using membranes. Particularly, humic substances extracted from soils are frequently used in many fundamental studies representing natural organic matter in raw water for drinking water treatment. In this study, ultrafiltration (UF) of artificial humic water and natural river water was conducted and the characteristics of removal efficiency and permeability were compared. In the UF of river water, the transmembrane pressure increased in the same pattern with that of 5 mg/L humic water. For the removal of organic matter and fine particles, however, two types of feed water had shown different trends. Kaolin particles and humic acids added to artificial water were better removed, while colloids and organics in natural water were relatively poorly removed. From the $UV_{254}$ and GPC analyses, it seemed that the hydrophobicity and size of humic substances contributed to the greater removal of organic matter. The UF membrane applied for humic water also showed a higher flux recovery by caustic chemical cleaning than that for river water.

Effect of Fluidized Bed Powdered Activated Carbon Impregnated by Iron Oxide Nano-particles on Enhanced Operation and NOM Removal of MF Membrane System (산화철 나노입자 표면개질 분말활성탄 유동층에 의한 MF 막 분리 공정의 운전 및 NOM 제거 효율 향상)

  • Kim, Sung-Su;Seo, Gyu-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.5
    • /
    • pp.332-339
    • /
    • 2011
  • Effects of powdered activated carbon impregnated by iron oxide nano particle (Impregnated PAC) on the microfiltration (MF) membrane system performance in NOM removal from water were investigated in this study. A fluidized bed column was employed as a pretreatment of MF membrane process. The Impregnated PAC bed was stably maintained at an upflow rate of 63 m/d without leakage of the Impregnated PAC particles, which provided a contact time of 29 minutes. A magnetic ring at the upper part of the column could effectively hold the overflowing discrete particles. The Impregnated PAC column demonstrated a significant enhancement in the MF membrane performance in terms of fouling prevention and natural organic matter (NOM) removal. Trans-membrane pressure of the MF membrane increased to 41 kPa in 98 hours of operation, while it could be maintained at 12 kPa with the Impregnated PAC pretreatment. Removal of NOM determined by dissolved organic carbon and UV254 was also enhanced from 46% and 51% to 75% and 84%, respectively, by the pretreatment. It was found that the Impregnated PAC effectively removed a wide range of different molecular-sized organic compounds from size exclusion analysis.