• Title/Summary/Keyword: Organic removal

Search Result 1,935, Processing Time 0.029 seconds

The Effects of PAC (Powdered Activated Carbon) on Water Treatment Performance of an Immersed Membrane System Using Flat-sheet Membrane Module (평막을 이용한 침지형 막여과시스템에서 고농도 분말활성탄 주입에 의한 수처리성능 개선 효과)

  • Gai, Xiang-Juan;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.195-201
    • /
    • 2007
  • A submerged flat-sheet membrane separation system integrated with PAC (powdered activated carbon) was used in this research in order to investigate the effects of PAC on the efficiencies of operation and treatment and to evaluate the performance of the system. The experiments were carried out under operating conditions of a filtration rate of 0.38 m/d, water temperature of $20-28^{\circ}C$, and PAC dose of 0 g/L (Run-A) and 20 g/L (Run-B). The influent concentrations of TOC (total organic carbon), $NH_4{^+}-N$ (ammonia nitrogen) and $UV_{254}$ (UV absorbance at 254 nm) were 2.48 mg/L, 1.4 mg/L and 2.53 1/m, respectively. TOC removal of 43.2 and 73.6%, ammonia nitrogen removal of 4.9 and 15.9%, and $UV_{254}$ removal of 20.6 and 31.6% were obtained for Run-A and Run-B, respectively. During an experimental period of 33 days, no change was found in TMP (Run-B), but the TMP in Run-A increased by 5 kPa after 29 days. This research showed that the filtrate quality and the performance efficiency were enhanced when PAC was introduced into the filtration system.

Removal of Heavy Metals from Acid Mine Drainage Using Sulfate Reducing Bacteria (황산염환원균을 이용한 폐광폐수의 중금속 제거)

  • Paik, Byeong Cheon;Kim, Kwang Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.47-54
    • /
    • 1999
  • SRB(Sulfate Reducing Bacteria) converts sulfate into sulfide using an organic carbon source as the electron donor. The sulfide formed precipitates the various metals present in the AMD (Acid Mine Drainage). This study is the fundamental research on heavy metal removal from AMD using SRB. Two completely mixed anaerobic reactors were operated for cultivation of SRB at the temperature of $30^{\circ}C$ and anaerobic batch reactors were used to evaluate the effects of carbon source, COD/sulfate($SO_4^=$) ratio and alkalinity on sulfate reduction rate and heavy metal removal efficiency. AMD used in this study was characterized by low pH 3.0 and 1000mg/l of sulfate and dissolved high concentration of heavy metals such as iron, cadmium, copper, zinc and lead. It was found that glucose was an organic carbon source better than acetate as the electron donor of SRB for sulfate reduction in AMD. Amount of sulfate reduction maximized at the COD(glucose)/sulfate ratio of 0.5 in the influent and then removal efficiencies of heavy metals were 97.5% of Cu, 100% of Pb, 100% of Cr, 49% of Mn, 98% of Zn, 100% Cd and 92.4% of Fe. Although sulfate reduction results in an increase in the alkalinity of the reactor, alkalinity of 1000mg/1 (as $CaCo_3$) should be should be added continuously to the anaerobic reactor in order to remove heavy metals from AMD.

  • PDF

Comparison of physical cleaning applied to chemical backwashing of wastewater reuse membrane system (하수재이용 막여과 공정에서 약품 역세에서의 물리세정 영향 비교 평가)

  • Lee, Chang-Ha;Kim, Young-Hoon;Jeon, Min-Jung;Lee, Yong-Soo;Jang, Am;Kim Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.981-987
    • /
    • 2011
  • Biologically treated water contains a large quantity of organic matters and microorganisms which can cause various problems to membrane. The membrane fouling occurred by these reasons is hard to control by single physical cleaning. This study analyzes the efficiency of aeration with chemical backwashing and foulants removal during chemical backwashing. The cleaning efficiency improves when the chemical concentration is high and the contact time of chemical is long. Chemical backwashing with aeration shows exceptional cleaning efficiency which leads the physical cleaning is required during chemical backwashing since it forms flow inside the membrane submerged tank. From the foulants removal analysis, the particles such as turbidity and TOC removal rate increase when the aeration is applied. Dissolved matter of DOC and UV254 removal is dependent on higher chemical concentration. According to FTIR analysis, one of major foulants, the polysaccharide is controlled by the chemical backwashing with aeration condition.

Effects of Recycled Wastewater and Surfactant on the Treatment Efficiency of PAHs-Contaminated Soil in Slurry Bioreactor (슬러리 생물반응기를 이용한 PAHs 오염토양처리에서 재순환수와 계면활성제의 효과)

  • Namkoong, Wan;Na, Kyung-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.1
    • /
    • pp.119-126
    • /
    • 2001
  • This research was carried out to evaluate the effect of recycled wastewater and surfactant above CMC(critical micelle concentration) on the removal rate of PAHs in bench-scale slurry bioreactor. Kinetic parameters based on zero order and first order kinetic models were estimated. The first order model was able to describe the removal of phenanthrene and pyrene with high correlation coefficients. Addition of recycled wastewater could enhance the removal rates of phenanthrene and pyrene. Addition of surfactant above CMC could enhance desorption rate and removal rate of phenanthrene and pyrene.

  • PDF

Removal of Volatile Organic Compounds Using a Plasma Assisted Biotrickling System (플라즈마를 결합한 바이오 트리클링 시스템에 의한 휘발성 유기물질의 제거)

  • Kim, Hak-Joon;Han, Bang-Woo;Kim, Yong-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.727-733
    • /
    • 2007
  • In this study, a newly developed biotrickling system, combined with a non-thermal plasma reactor, was investigated to effectively treat gaseous contaminants such as VOCs (Volatile Organic Compounds). Three kinds of non-thermal plasmas (NTPs) such as a rod type dielectric barrier discharge (DBD) plasma, a packed bead type DBD plasma and a gliding arc (GA) plasma, were tested and compared in terms of power consumption. The rod type DBD plasma was selected as one for integration with biotrickling system due to its relatively high VOC removal efficiency, low power consumption and low pressure drop. Toluene and xylene as representatives of VOCs were used as test gases. The experiment results showed that the efficiency of biotrickling system was especially very low at the high gas concentration and high flow rate and the removal efficiencies of VOCs were considerably enhanced in the biotrickling system, when the DBD plasma was worked in front of that even at the high gas concentration and high flow rate.

Nitrogen Removal from Wastewater by a Multi-stage Bio-reactor (다단 생물반응기에 의한 질소제거)

  • 최규철;정일현
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.91-103
    • /
    • 1998
  • Design data for COD and nitrogen removal from wastewater were collected from Pilot's Multi-stage Bio-reactor. Hyraulic conditions and pollutant loadings were varied in order to optimize the biological and operational parameters. Pilot's experimental results summarize as followings. 1. T-N removal efficiency in the organic volumetric loading 0.2 kgCOD/m$^{3}$·d was obtained as maxium of 85% at internal recycle ratio 2.5 and in more ratio than this it was decreased. Organic removal efficiency was about 91% under the overall experimental conditions and not influenced by recycle ratio.. 2. Nitrification reaction was shown as maxium in the SCOD$_{cr}$/NH$^{+}$-N ratio of 6.5 and in more ratio than this it was decreased. Denitrification rate was the maxium as 85% in more than 7.5 of SCOD$_{cr}$/NO$_{x}$-N ratio and in the ratio over this ratio it becomes constant. 3. By utilizing an applied new model of Stover-Kincannon from Monod's kinetic model, concentration of T-N in the effluent according to flow quanity in the influent was estimated as 8.74 and -67.5 respectively. The formula for estimating T-N concentration of effluent was obtained like this: N$_e$=N$_0$(1- $\frac{8.74}{(QN$_0$/A)-67.05}$)

  • PDF

A Study on the Substrate Removal Efficiency with Varing SRT in Anaerobic Treatment of High Organic Wastewater (고농도 유기성폐수의 혐기성처리시 SRT변화에 따른 유기물질 제거효율에 관한 연구)

  • Kim Byeong Ho;Kim Dong Min
    • Journal of environmental and Sanitary engineering
    • /
    • v.4 no.1 s.6
    • /
    • pp.43-52
    • /
    • 1989
  • A synthetic wastewater composed of powdered baby food and inorganic nutrients was treated by five 3.6L anaerobic reactors in order to test the relationship between solids retention time (SRT) and media surface ratio, and the removal efficiencies of organic substrate. Of the five reactors, four were semi-continuously fed stirred-tank reactors and one continuously-stirred batch reactor. The influent was 7430mg/L in COD, 7120 mg/L $BOD_L$ and 6350mg/L in $BOD_5$, respectively. Operating temperature was $35{\pm}1^{\circ}C$ and pH in the range 6.9 to 7.2. In this experimental study it was found that a linear relationship existed, within the experiment range, between SRT and media surface ratio, and that SRT and removal efficiency increased with increasing media surface ratio. The substrate removal efficiencies were 82.7 to $88.2\%$ in COD, 82.9 to $88.4\%$ in $BOD_L$ and 83.3 to $88.7\%$ in $BOD_5$, respectively.

  • PDF

The Removal of Organic Dye Waste using Natural Clay Minerals (천연산 점토광물을 이용한 폐-유기 염료 제거)

  • Park, Jung-Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.4
    • /
    • pp.321-327
    • /
    • 2006
  • red 1 and acid blue 92, anionic dyes, were removed from synthetic wastewater by the surfactant-modified clay minerals. Two different clays, such as Korean clay(M78) and Japanese clay(KJ) were treated with three different sulfactants, CTMA, DSDMA and TMSA. The surfactant-modified clay minerals such as M-1(CTMA), M-3(TMSA), KJ-1(CTMA) and KJ-3(TMSA), showed high removal efficiencies with dyes, while M-2(DSDMA) and KJ-2(DSDMA) could adsorb both dyes with relatively low efficiencies. Furthermore, almost 100% absorption of both dyes onto M-1(CTMA) and KJ-3(TMSA) revealed the possibility that these materials can be used for the removal of hazardous organic dyes from wastewater.

Improvement of Organics and Nitrogen Removal by HRT and Recycling Rate in Air Lift Reactors (공기부상반응조에서 체류시간과 반송율에 의한 유기물질 및 질소제거 향상에 관한 연구)

  • Kim, Jin-Ki;Yu, Sung-Whan;Lim, Bong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.45-50
    • /
    • 2006
  • This study was performed to evaluate the air lift reactors (ALR) by variations of HRT and recycling rate. Air lift reactor was composed of bioreactor and clarifier above it. To remove organic matters and nitrogen through the formation of microbic film and filtration, bio-filter reactors were filled with clay, glass, bead, waste plastic, respectively. Influent wastewater was fed to biofilter reactor, and effluent wastewater from bio-filter reactor was injected ALR again, instead of adding external carbon source. Effluent BOD concentration was satisfied with lower than 10 mg/L in recycling rate 100% regardless of the variation of HRT and the kinds of media materials. In HRT 4 hr, recycling rate 100%, BOD removal efficiency rate was from about 85 to 90%, COD removal efficiency rate was higher than 90%. Effluent TN concentration was satisfied with less than 20 mg/L, if HRT was maintained by over than 6 hr regardless of recycling rate and media materials. Over than HRT was 4 hr, microbes concentration in air lift reactor was maintained over than 2,500 mg/L constantly, not sensitive to environmental condition, and organic removal was effective as it was higher.

Evaluation of Advanced Oxidation Process(AOP) as a Pretreatment Process of Biological Activated Carbon in Drinking Water Treatment (정수처리에서 생물활성탄의 전처리로서 고급산화처리법의 평가)

  • Kim Woo-Hang
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.725-730
    • /
    • 1999
  • The advanced oxidation process (AOP) using ozone combined with hydrogen peroxide and ultraviolet treatment were evaluated for biodegradable dissolved organic carbon (EDOC) formation and dissolved organic carbon (DOC) removal. Oxidation treatment were conducted alone or combination with ozone, hydrogen peroxide and ultraviolet processes. Ozone dosage of ozone process was varied from $0.5mg/l{\ell}\cdot}min$ to $5mg/{\ell}{\cdot}min$. Ozone/hydrogen peroxide process was done using $20mg/{\ell}{\cdot}min$ of hydrogen peroxide concentration. Ozone/ultraviolet process was irradiated with $12mW/cm^2$ of density and 254nm. Ozone dosage was varied from $0.5mg/{\ell}{\cdot}min$ to $5mg/{\ell}{\cdot}min$ at the ozone/hydrogen peroxide and ozone/ultraviolet processes too. Contact time of all the process was 20 minutes. Oxidation treatment were performed on microfiltration effluent samples. BDOC formation was reached to an optimum at ozone dosage of $1.5mg/{\ell}{\cdot}min$ in the ozone/hydrogen peroxide process and $1mg/{\ell}{\cdot}min$ in ozone/ultraviolet process, after which BDOC formation was decreased at higher ozone dosages. But BDOC formation was increased with ozone dosages increasing in ozone process. The efficiency of DOC removal was higher AOPs than ozone process. Ozone/ultraviolet proces was the highest for DOC removal efficiency in each process. THMFP. removal efficiency by ozone/ultraviolet process was higher than that by each of ozone process and ozone/hydrogen peroxide process.

  • PDF