• Title/Summary/Keyword: Organic photovoltaic cells

Search Result 132, Processing Time 0.032 seconds

Silicon wire array fabrication for energy device (실리콘 와이어 어레이 및 에너지 소자 응용)

  • Kim, Jae-Hyun;Baek, Seung-Ho;Kim, Kang-Pil;Woo, Sung-Ho;Lyu, Hong-Kun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.440-440
    • /
    • 2009
  • Semiconductor nanowires offer exciting possibilities as components of solar cells and have already found applications as active elements in organic, dye-sensitized, quantum-dot sensitized, liquid-junction, and inorganic solid-state devices. Among many semiconductors, silicon is by far the dominant material used for worldwide photovoltaic energy conversion and solar cell manufacture. For silicon wire to be used for solar device, well aligned wire arrays need to be fabricated vertically or horizontally. Macroscopic silicon wire arrays suitable for photovoltaic applications have been commonly grown by the vapor-liquid-solid (VLS) process using metal catalysts such as Au, Ni, Pt, Cu. In the case, the impurity issues inside wire originated from metal catalyst are inevitable, leading to lowering the efficiency of solar cell. To escape from the problem, the wires of purity of wafer are the best for high efficiency of photovoltaic device. The fabrication of wire arrays by the electrochemical etching of silicon wafer with photolithography can solve the contamination of metal catalyst. In this presentation, we introduce silicon wire arrays by electrochemical etching method and then fabrication methods of radial p-n junction wire array solar cell and the various merits compared with conventional silicon solar cells.

  • PDF

Electronic and carrier transport properties of small molecule donors

  • Valencia-Maturana, Ramon;Pao, Chun-Wei
    • Coupled systems mechanics
    • /
    • v.6 no.1
    • /
    • pp.75-96
    • /
    • 2017
  • As electron donor/acceptor materials for organic photovoltaic cells, small-molecules donors/acceptor are attracting more and more attention. In this work, we investigated the electronic structures, electrochemical properties, and charge carrier transport properties of four recently-synthesized small-molecule donors/acceptor, namely, DPDCPB (A), DPDCTB (B), DTDCPB (A1), and DTDCTB (B1), by a series of ab initio calculations. The calculations look into the electronic structure of singly oxidized and reduced molecules, the first anodic and cathodic potentials, and the electrochemical gaps. Results of our calculations were in accord with those from experiments. Using Marcus theory, we also computed the reorganization energies of hole/electron hoppings, as well as hole/electron transfer integrals of multiple possible molecular dimer configurations. Our calculations indicated that the electron/hole transport properties are very sensitive to the relative separations/orientations between neighboring molecules. Due to high reorganization energies for electron hopping, the hole mobilities in the molecular crystals are at least an order of magnitude higher than the electron mobilities.

Small Molecules Based on Tetrazine or DPP for OPV Application (Tetrazine/DPP를 갖는 유기태양전지용 신규 단분자에 관한 연구)

  • Kim, Jin-A;Hyun, Jina;Lee, Kyeong K.;Lee, Sungkoo;Lim, Eunhee
    • Applied Chemistry
    • /
    • v.15 no.2
    • /
    • pp.105-108
    • /
    • 2011
  • Organic photovoltaic cells (OPVs) have attracted considerable attention due to their low cost, light-weight and flexible characteristics. Small molecules have advantages of well-defined structure and easy synthesis. In this work, new tetrazine, DPP, and furan-based oligomers for organic solar cell were synthesized by Suzuki coupling reaction. The structures were confirmed by NMR and optical and electronic properties were investigated by UV-vis absorption.

Impact of Solution-Processed BCP Buffer Layer on Efficient Perovskite Solar Cells (페로브스카이트 태양전지에서의 저온 용액 공정의 BCP 버퍼층 효과)

  • Jung, Minsu;Choi, In Woo;Kim, Dong Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.73-77
    • /
    • 2021
  • Inorganic-organic hybrid perovskite solar cells have demonstrated considerable improvements, reaching 25.5% of certified power conversion efficiency in 2020 from 3.8% in 2009. In normal structured perovskite solar cells, TiO2 electron-transporting materials require heat treatment process at a high temperature over 450℃ to induce crystallinity. Inverted perovskite solar cells have also been studied to exclude the additional thermal process by using [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as a non-oxide electron-transporting layer. However, the drawback of the PCBM layer is a charge accumulation at the interface between PCBM and a metal electrode. The impact of bathocuproin (BCP) buffer layer on photovoltaic performance has been investigated herein to solve the problem of PCBM. 2-mM BCP-modified perovskite solar cells were observed to exhibit a maximum efficiency of 12.03% compared with BCP-free counterparts (5.82%) due to the suppression of the charge accumulation at the PCBM-Au interface and the resulting reduction of the charge recombination between perovskite and the PCBM layer.

Development of High-Efficient Organic Solar Cell With $TiO_2$/NiO Hole-Collecting Layers Using Atomic Layer Deposition

  • Seo, Hyun Ook;Kim, Kwang-Dae;Park, Sun-Young;Lim, Dong Chan;Cho, Shinuk;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.157-158
    • /
    • 2013
  • Organic solar cell was fabricated using one-pot deposition of a mixture of NiO nanoparticles, P3HT and PCBM. In the presence of NiO, the photovoltaic performance was slightly increased comparing to that of the device without NiO. When $TiO_2$ thin films with a thickness of 2~3 nm was prepared on NiO nanoparticles using atomic layer deposition, the power conversion efficiency was increased by a factor 2.5 with respect to that with bare NiO. Moreover, breakdown voltage of the film consisting of NiO, P3HT, and PCBM on indium tin oxide was increased by more than 1 V in the presence of $TiO_2$-shell on NiO nanoparticles. It is evidenced that S atoms of P3HT can be oxidized on NiO surfaces, and $TiO_2$-shell on NiO nanoparticles. It is evidenced that S atoms of P3HT can be oxidzed on NiO surfaces, and $TiO_2$ shell heavily reduced oxidation of S at oxide/P3HT interfaces. Oxidized S atoms can most likely act as carrier generation sites and recombination centers within the depletion region, decreasing breakdown voltage and performance of organic solar cells. Our result shows that fabrication of various core-shell nanostruecutres of oxides by atomic layer deposition with controlled film thickness can be of potential importance for fabricating highly efficient organic solar cells.

  • PDF

Optical and Electrical Properties of OLED Depending on $O_2$ Plasma Treatment (산소 플라즈마 처리에 따른 OLED의 광학 및 전기적 특성)

  • Lee, Sun-Il;Sung, Yong-Ho;Lee, Dae-Cheon;Lee, Sang-Mok;Song, Bo-Young;Han, Hyeon-Seok;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1489-1490
    • /
    • 2011
  • The $O_2$ plasma treatment is used as improvement of ITO roughness glass for organic light-emitting diodes and organic photovoltaic cells. This study examined the effect of the electrical properties of OLED according to variation of $O_2$ plasma power. In experiment, we found that the electrical characteristics of device are excellent when the power of $O_2$ plasma is 250 W. And when the power of $O_2$ plasma increases over 250 W, the electrical properties were getting worse. $O_2$ plasma treatment not only prevents the diffusion of indium, a metal constituent, to an organic layer but also plays a significant role as improvement of ITO roughness. By considering organic light-emitting diodes treating $O_2$ plasma, it could contribute to the improvement of the efficiency of the device.

  • PDF

Light Scattering Effect of Incorporated PVP/Ag Nanoparticles on the Performance of Small-Molecule Organic Solar Cells

  • Heo, Il-Su;Park, Da-Som;Im, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.221-221
    • /
    • 2012
  • Small-molecule organic photovoltaic cells have recently attracted growing attention due to their potential for the low-cost fabrication of flexible and lightweight solar modules. The PVP/Ag nanoparticles were synthesized by the reaction of poly vinylpyrrolidone (PVP) and silver nitrate at $150^{\circ}C$. In the reaction, the size of the nanoparticles was controlled by relative mole fractions between PVP and Ag. The PVP/Ag nanoparticles with various sizes were then spin coated on the patterned ITO glass prior to the deposition of the PEDOT:PSS hole transport layer. The scattering of the incident light caused by these incorporated nanoparticles resulted in an increase in the path length of the light through the active layer and hence the enhancement of the light absorption. This scattering effect increased as the size of the nanoparticles increased, but it was offset by the decrease in total transmittance caused by the non-transparent nanoparticles. As a result, the maximum power conversion efficiency, 0.96% which was the value enhanced by 14% compared to the cell without incorporation of nanoparticles, was obtained when the mole fraction of PVP:Ag was 24:1 and the size of the nanoparticles was 20~40 nm.

  • PDF

Preparation and Characterization of Advanced Organic Polymer - Inorganic Composite Gel Electrolyte for Dye-sensitized Solar Cells (염료 감응 태양전지를 위한 고급 유기 고분자 - 무기 복합 겔형 전해질의 제조와 특성분석)

  • Akhtar, M. Shaheer;Park, Jung-Guen;Kim, Ui-Yeon;Lee, Hyun-Choel;Yang, O-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.350-354
    • /
    • 2009
  • In this work, polymer - inorganic composites have prepared using polymer such as polyethylene glycol (PEG)/poly (methyl methacrylate, PMMA) and inorganic nanofillers materials such as TiO2 nanotubes (TiNTs)/carbon nanotubes (CNTs). The extensive structural, morphological and ionic properties revealed that the high surface area and tubular feature of nanofillers improved the interaction and cross-linking to polymer matrix which is significantly enhanced the ionic conductivity and electrical properties of composite electrolytes. Comparably high conversion efficiency ~4.5% has been observed by using the newly prepared PEG-TiNTs composite solid electrolyte as compared with PMMA-CNTs electrolyte based DSSCs (~3%). The detailed comparative properties would be discussed in term of their structural, morphology, ionic and photovoltaic properties.

  • PDF

Highly Efficient and Stable Organic Photo-Sensitizers based on Triphenylamine with Multi-anchoring Chromophore for Dye-sensitized Solar Cells (트리페닐아민을 이용한 염료감응형 태양전지 고효율 염료합성)

  • Yang, Hyunsik;Jung, Daeyoung;Jung, Miran;Kim, Jaehong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.88.1-88.1
    • /
    • 2010
  • Organic dyes, because of their many advantages, such as high molar extinction coefficients, convenience of customized molecular design for desired photophysical and photochemical properties, inexpensiveness with no transition metals contained, and environment-friendliness, are suitable as photosensitizers for the Dye-sensitized Solar Cell (DSSC). The efficiency of DSSC based on metal-free organic dyes is known to be much lower than that of Ru dyes generally, but a high solar energy-to-electricity conversion efficiency of up to 8% in full sunlight has been achieved by Ito et al. using an indoline dye. This result suggests that smartly designed and synthesized metal-free organic dyes are also highly competitive candidates for photosensitizers of DSSCs with their advantages mentioned above. Recently, the performance of DSSC based on metal-free organic dyes has been remarkably improved by several groups. We had reported the novel organic dye with double electron acceptor chromophore, which was a new strategy to design an efficient photosensitizer for DSSC. To verify the strategy, we synthesized organic dyes whose geometries, electronic structures and optical properties were derived from preceding density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. In this paper, we successfully synthesized the chromophore containing multi-acceptor push-pull system from triphenylamine with thiophene moieties as a bridge unit. Organic dyes with a single electron acceptor and double acceptor system were also synthesized for comparison purposes. The photovoltaic performances of these dyes were compared, and the recombination dark current curves and the incident photon-to-current (IPCE) efficiencies were also measured in order to characterize the effects of the multi-anchoring groups on the open-circuit voltage and the short-circuit current. In order to match specifications required for practical applications to be implemented outdoors, light soaking and thermal stability tests of these DSSCs, performed under $100mWcm^{-2}$ and $60^{\circ}C$ for 1000h.

  • PDF

Photovoltaic Properties of Tandem Structure Consisting of Quantum Dot Solar cell and Small Molecule Organic Solar cell

  • Jang, Jinwoong;Choi, Geunpyo;Yim, Sanggyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.249.2-249.2
    • /
    • 2015
  • Connecting two or more sub-cells is a simple and effective way of improving power conversion efficiency (PCE) of solar cells, and the theoretical efficiency of this tandem cell is known to reach 85~88% of the sum of the sub-cell's efficiencies. There are two ways of connecting sub-cells in the tandem structure, i.e. parallel and series connection. The parallel connection can increase the short circuit current (Jsc) and the series connection can increase the open circuit voltage (Voc). Although various tandem structures have been studied, the full use of incident light and optimization of cell efficiency is still limited. In this work, we designed series tandem solar cells consisting of lead sulfide (PbS) quantum dots/zinc oxide-based QDSC and zinc phthalocyanine (ZnPc)/C60-based small molecule OSCs. It is expected that the loss of the incident light is minimized because the absorption range of the PbS quantum dots and ZnPc is significantly different, and the Voc increases according to the Kirchhoff's law.

  • PDF