• Title/Summary/Keyword: Organic phosphorus

Search Result 888, Processing Time 0.03 seconds

Study on a Small-scale Wastewater Treatment System using Biological Aerated Filter (생물학적 호기성필터를 이용한 소규모 하수처리시스템에 관한 연구)

  • Park, Chan G.;Jo, Eun Y.;Kim, Young H.;Park, Sung J.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.41-45
    • /
    • 2014
  • The biological aerated filter (BAF) reactor is regarded as an effective biological wastewater treatment method. It can remove pollutants by carrier filtration and biodegradation. Due to its advantages, which include high biomass retention, tolerance to toxicity, excellent removal efficiency, and slurry separation, BAF has been widely used to remove COD, $NH_4{^+}-N$, phosphorus, and other harmful organic substances. In this study, the BAF reactor was used to remove organic contaminants of domestic wastewater of Korea at both the benchand pilot-scale. The main objectives of this study are to: (i) investigate the removal efficiency of organic contaminants (ex. COD, nitrate, phosphorus) in BAF reactors at both scales; (ii) characterize the small-scale wastewater treatment plant using the BAF reactor. The concentration of COD in the influent increased from 69 to 246 mg/L. During the operation period, the final effluent concentration of COD remained maximum 4.0 mg/L, and the average removal efficiency was above 88%. The present study investigated the removal efficiencies of COD, TN, TP and $NH_4{^+}-N$ from smelting wastewater by BAF system. When treating wastewater in both bench and pilot-scale reactors, the BAF worked well.

Effect of Compost and Gypsum Application on the Chemical Properties and Fertility Status of Saline-Sodic Soil

  • Sarwar, Ghulam;Ibrahim, Muhammad;Tahir, Mukkram Ali;Iftikhar, Yasir;Haider, Muhammad Sajjad;Noor-Us-Sabah, Noor-Us-Sabah;Han, Kyung-Hwa;Ha, Sang-Keun;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.510-516
    • /
    • 2011
  • Salt-affected soils are present in Pakistan in significant quantity. This experiment was conducted to assess the effectiveness of compost for reclamation and compare its efficiency with gypsum. For this purpose, various combinations of compost and gypsum were used to evaluate their efficacy for reclamation. A saline-sodic field having $pH_s$ 8.90, $EC_e$ $5.94dS\;m^{-1}$ and SAR $34.5(mmol\;L^{-1})^{1/2}$, SP (saturation percentage) 42.29% and texture Sandy clay loam, gypsum requirement (GR) $8.75Mg\;ha^{-1}$ was selected for this study. The experiment comprised of seven treatments (control, gypsum alone, compost alone and different combinations of compost and gypsum based on soil gypsum requirements). Inorganic and organic amendments (gypsum and compost) were applied to a saline sodic soil. Rice and wheat crops were grown. Soil samples were collected from each treatment after the harvest of both crops and analyzed for chemical properties (electrical conductivity, soil reaction and sodium adsorption ratio) and fertility status (organic matter, available phosphorus and potassium contents) of soil. Results of this study revealed that compost and gypsum improved chemical properties (electrical conductivity, soil reaction and sodium adsorption ratio) of saline sodic soil to the desired levels. Similarly, all parameters of soil fertility like organic matter, available phosphorus and potassium contents were built up with the application of compost and gypsum.

Mg/Al Impregnated Biochar for the Removal and Recovery of Phosphates and Nitrate

  • Kim, Dong-Jin
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2019.10a
    • /
    • pp.134-134
    • /
    • 2019
  • Utilization of organic waste as a renewable energy source is promising for sustainability and mitigation of climate change. Pyrolysis converts organic waste to gas, oil, and biochar by incomplete biomass combustion. Biochar is widely used as a soil conditioner and adsorbent. Biochar adsorbs/desorbs metals and ions depending on the soil environment and condition to act as a nutrient buffer in soils. Biochar is also regarded as a carbon storage by fixation of organic carbon. Phosphorus (P) and nitrogen (N) are strictly controlled in many wastewater treatment plants because it causes eutrophication in water bodies. P and N is removed by biological and chemical methods in wastewater treatment plants and transferred to sludge for disposal. On the other hand, P is an irreplaceable essential element for all living organisms and its resource (phosphate rock) is estimated about 100 years of economical mining. Therefore, P and N recovery from waste and wastewater is a critical issue for sustainable human society. For the purpose, intensive researches have been carried out to remove and recover P and N from waste and wastewater. Previous studies have shown that biochars can adsorb and desorbed phosphates implying that biochars could be a complementary fertilizer. However, most of the conventional biochar have limited capacity to adsorb phosphates and nitrate. Recent studies have focused on biochar impregnated with metal salts to improve phosphates and nitrate adsorption by synthesizing biochars with novel structures and surface properties. Metal salts and metal oxides have been used for the surface modification of biochars. If P removal is the only concern, P adsorption kinetics and capacity are the only important factors. If both of P and N removal and the application of recovery are concerned, however, P and N desorption characteristics and bioavailability are also critical factors to be considered. Most of the researches on impregnated biochars have focused on P removal efficiency and kinetics. In this study, coffee waste is thermally treated to produce biochar and it was impregnated with Mg/Al to enhance phosphates and nitrate adsorption/desorption and P bioavailability to increase its value as a fertilizer. Kinetics of phosphates and nitrate adsorption/desorption and bioavailability analysis were carried out to estimate its potential as a P and N removal adsorbent in wasewater and a fertilizer in soil.

  • PDF

Energy Flow of Benthic Community at the Intertidal Zone of Kum River Estuary (錦江河口 潮間帶 低棲生物群集의 에너지 流轉)

  • Kim, Joon-Ho;Kyung-Je Cho;Chi Shick Kim
    • The Korean Journal of Ecology
    • /
    • v.8 no.1
    • /
    • pp.7-14
    • /
    • 1985
  • Biomass, carbon, nitrogen and phosphorus standing crops of bethic community were estimated at the trophic levels in the intertidal zone of Kum river estuary. Annual mean biomass of zoobenthos was 130.5g/$m^2$, body fraction 26.7g/$m^2$ and shell fraction 103.8 g/$m^3$. Biomass estimated as ash-free dry weight was total 28.9g/$m^2$, body fraction 20.2g/$m^2$ and shell fraction 8.7g/$m^2$ Carbon standing crops of zoobenthos were 15.9gC/$m^2$, in which organic carbon content was 7.0gC/$m^2$ and carbonate carbon was 8.9gC/$m^2$. Production efficiency by carbon standing crops from sediment to herbivores and carnivores and 10.6% and 16.0% in phosphorus, respectively. Annual primary production of benthic algae was crudely estimated to 329g.dw/$m^2$/yr by using the biomass and turn-over rate of benthic algae.

  • PDF

Symbiotic Nitrogen Fixation Activity and Environmental Factors of Robinia Pseudo-acacia L. (아까시나무 ( Robinia pseudo - acacia L. ) 의 공생적 질소고정 활성과 환경요인)

  • Hong, Sung-Jin;Song, Seung-Del
    • The Korean Journal of Ecology
    • /
    • v.13 no.2
    • /
    • pp.93-100
    • /
    • 1990
  • The activity of symbiotic -fixation and environmental factors of Robinia pseudo-acacia L., bearing root nodules, were quantitatively analyzed during the growing period. Among changes of total nitrogen and phosphorus contents of each organ, leaves showed prominent decreases from the highest quantity of the early growing period to the lowest of the late period. The rhizosphere showed acidic pH and low level of nitrogen, phosphorus and organic matter contents during the growing period. -fixation activity of nodules initiated from April and showed the maximum value of 190 $\mu$/g DW/hr in late June and than decreased to 50$\mu$M/g DW/hr during the rainy and dry season. Another peak of the activity attained 246$\mu$M/g DW/hr in the late growing stage of September. The maximum value of nitrogen fixation activity was observed at the conditions of pH7, $25\{\circ}C$ of temperature and 20 Kpa of oxygen partial pressure.

  • PDF

Blood Chemistry in Periodontal Disease (치주질환시의 혈생화학적연구)

  • Han, K.H.
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.9 no.1
    • /
    • pp.59-62
    • /
    • 1969
  • The causes of periodontal disease have been descried as malocclusion, trauma from occlusion, local irritants and poor oral hygien. The systemic factor has also been considered as a etiologic factor of periodontal disease. On the other aspect systemic condition could be affected by periodontal disease. For the study of relationships between periodontal disease and systemic condition, twenty patients with periodontal disease and twenty persons with no periodontal involvement were evaluated for inorganic elements and organic materials in the blood. The results of the blood analysis of the two groups were as follows. : Phosphorus and alkline-phoshatase in the group with periodontal disease showed slightly increased phenomenon compared to the control group, and on the other hand calcium and calcium-phosphorus ratio decreased phenomenon. But there is no any significant alteration in the content of each element between the two groups.

  • PDF

Seasonal Changes in the Productivity and Soil Nutrients of Phragmites communis Community in the Salt Marsh of the Sumjin-River Estuary (섬진강 하구 염습지 갈대군락의 생산성과 토양양분의 계절적 변화)

  • Oh, Kyung-Hwan;Ihm, Byung-Suh
    • The Korean Journal of Ecology
    • /
    • v.6 no.2
    • /
    • pp.90-97
    • /
    • 1983
  • Seasonal changes of the soil nutrient contents and aboveground biomass, relationship between the soil nutrients and the productivity, and the net efficiencies of solar energy conversion were studied in two reeed communities (Phragmites communis Trin.) at the salt marsh in the estuary of the Sumjin-River from April 30 to October 9, 1981. The inorganic nutrients such as exchangeable sodium and potassium of soil were decreased during growing season. The amounts of organic matter, exchangeable sodium and potassium, total nitrogen, and available phosphorus in stand $\prod$ were much more than those of stand $\coprod$ . Productivity of Phragmites communis was positively correlated with the soil nutrients such as available phosphorus, exchangeable potassium and total nitrogen. The maximum dry matter productions of the aboveground parts in stand $\prod$ stand $\coprod$ were $ 1, 120g/m^2; and; 843g/m^2$ in August, and the net coversion efficiencies of PhAR based on growing season (April to September) were 1.77% and 1.33%, respectively.

  • PDF

Fundamental Study of the Regeneration of Layered Double Hydroxide Saturated with Phosphate (인 포화 층상이중수산화물의 재생에 관한 기초 연구)

  • Choi, Jeong-Hak;Jung, Yong-Jun
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1333-1338
    • /
    • 2014
  • LDHs(layered double hydroxides) are of use adsorbent to remove heavy metals, micro-organic pollutants as well as high concentration of phosphorus from wastewater to low concentration of surface water without pH adjustments. This study examined the generation condition of LDHs saturated with phosphorus. Less than 20% regeneration rate was obtained in the absence of alkali and regeneration solution. After the desorption of LDHs with several conditions of acid and alkali solution, more than 60% of regeneration rate could be expected in the case of using $MgCl_2$ as regeneration solution.

Separation of Inorganic Sludge and MAP from Municipal Wastewater Sludge Using Hydrocyclone (습식 사이클론을 이용한 하수슬러지내 무기성분 및 MAP 분리)

  • Lee, Dong-Woo;Bae, Kang-Hyeong;Cho, Kun-Sang;Kim, Sung-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.135-142
    • /
    • 2014
  • The performance of inorganic sludge separation system is evaluated. Anaerobic digester effluent sludge is used for feed sludge of this system and hydrocyclone is used for inorganic sludge separation. For phosphorus removal and recovery $MgCl_2$ is pumped into MAP growth tank, a component of inorganic sludge separation system. Using this system inorganic sludge which contained less than 40 % of organic matter can be discharged stably and the maximum amount of separated inorganic sludge is 13.4 % of influent sludge based on dry solid. The amount of phosphorus recovered as MAP(as P) is 16.7 % to influent T-P.

Comparison of a Microbiological Model Simulation with Microcosm Data

  • Lee, Jae-Young;Tett, Paul;Jones, Ken
    • Journal of the korean society of oceanography
    • /
    • v.39 no.4
    • /
    • pp.222-233
    • /
    • 2004
  • Using nitrogen as the limiting nutrient, the default version of a microplankton-detritus model linked chlorophyll concentration to the autotroph nitrogen. However, phosphorus dynamics were added to simulate the results of a microcosm experiment. Using standard parameter values with a single value of microheterotroph fraction in the microplankton taken from the observed range, the best simulation successfully captured the main features of the time-courses of chlorophyll and particulate organic carbon, nitrogen and phosphorus, with root-mean-square error equivalent to 29% of particulate concentration. A standard version of microbiological model assumes complete internal cycling of nutrient elements; adding a term for ammonium and phosphate excretion by microheterotrophs did not significantly improve predictions. Relaxing the requirement for constant microheterotroph fraction resulted in an autotroph-heterotroph model AH, with dynamics resembling those of a Lotka-Volterra predator-prey system. AH fitted the microcosm data worse than did MP, justifying the suppression of Lotka-Volterra dynamics in MP. The paper concludes with a discussion of possible reasons for the success of the simple bulk dynamics of MP in simulating microplankton behaviour.