• Title/Summary/Keyword: Organic matter production

Search Result 782, Processing Time 0.018 seconds

Fertilizer Effect of Waste Nutrient Solution in Greenhouses for Young Radish Cultivation (열무 재배를 위한 시설하우스 폐양액의 비료 효과)

  • Hong, Youngsin;Moon, Jongpil;Park, Minjung;Son, Jinkwan;Yun, Sungwook
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.460-467
    • /
    • 2022
  • The purpose of this study is to enhance utilization of the waste nutrient solution (WNS) disposed at the hydroponic greenhouse. Several sets of testing were conducted to examine the effects of WNS: (a) a fertilizer effect, (b) soil column leaching, and (c) crop cultivation. The fertilizer effect test was applied in young radish cultivation by examining the growth characteristics of young radish and soil based on inorganic nitrogen according to the soil treatment of the nitrogen fertilizer (NF) and the WNS. The fertilizer effects and crop cultivation test were conducted with five treatments (A-E): A, non-treatment (water); B, 100% of NF; C, 70% of NF + 30% of WNS; D, 50% of NF + 50% of WNS; and E, 30% of NF + 70% of WNS. The soil column leaching test was conducted with three treatments: non-treatment (water), 100% of NF, 50% of WNS + 50% of NF. As a result, the chemical properties of the WNS were pH 6.0, EC 2.4dS·m-1, total phosphorus (T-P) 28mg·L-1, ammonium nitrogen (NH4-N) 5.0mg·L-1, and nitrate nitrogen (NO3-N) 301mg·L-1. The chemical properties of the soil were pH 5.51, EC 0.31dS/m, organic matter 2.08g·kg-1, NO3-N 9.64mg·kg-1, and NH4-N 3.20mg·kg-1. The results of fertilizer effects showed that the ratio of 50% or less of NF and 50% or more of WNS was high in young radish growth. There was no statistically significant difference between the soil chemistry in the C-E treatments where WNS was mixed with NF and the B treatment where only NF was applied. As a result of the soil column leaching test, there was no significant difference in the concentrations of NO3 and NH4 in the treatment of 100% of NF and 50% of NF + 50% of WNS. The study indicates, if the mixed fertilizer of WNS and NF is applied in the soil cultivation of young radish, it will reduce the use of NF and environmental pollution. This also helps reduce production costs on farmers and increase the yield of young radish.

Nature of Suppressiveness and Conduciveness of Some plant pathogens in Soils (토양내(土壤內) 식물(植物) 병원균(病原菌)의 발병억제(發病抑制) 및 유발성질(誘發性質))

  • Shim, Jae-Ouk;Lee, Min-Woong
    • The Korean Journal of Mycology
    • /
    • v.18 no.3
    • /
    • pp.164-177
    • /
    • 1990
  • This study was carried out to obtain some useful data for increasing an effective ginseng production. There was a direct relationship (r=0.2645) between spore germination of Fusarium solani and soil pH, and (r=0.315) between Cylindrocarpon destructans and soil pH. On the other hand, there was a direct relationship (r=0.19) between relative hyphal growth of Rhizoctonia solani and soil pH. There was a direct relationship (r=0.21) between number of total bacteria and F. solani, (r=0.37) between actinomycetes and F. solani and (r=0.20) between celluloytic bacteria and F. solani. However, there was an inverse relationship (r=-0.20) between number of total fungi and F. solani. There was a direct relationship (r=0.24) between number of actinomycetes and R. solani. Each ginseng pathogen-suppressive soil screened was 40 in F. solani, 20 in C. destructans and 9 soil samples in R. solani among 146 soil samples, respectively. The mean contents of K, Ca and Mg were fairly lower in each ginseng pathogen-suppressive soil than conducive soil, whereas Na were somewhat lower. The mean contents of organic matter were over 2 times higher in each ginseng pathogen-suppressive soil than conducive soil. The mean contents of phosphate were fairly lower in F. solani and R. solani-suppressive soil than conducive soil and, on the other hand, were somewhat higher in C. destructans-suppressive soil than conducive soil. The mean soil pH was somewhat lower in each ginseng pathogen-suppressive soil than conducive soil. The mean contents of sand were about 2 times higher in each ginseng pathogen­suppressive soil than conducive soil, whereas silt and clay were somewhat lower. The microbial numbers of total bacteria, total fungi and celluloytic fungi were higher in F. solani-suppressive soil than conducive soil, whereas actinomycetes and celluloytic bacteria were lower. Each microbial number of total bacteria or total fungi indicated a significant difference (p=0.05) between F. solani­suppressive and conducive soil, and the microbial number of actinomycetes was a highly significant difference (p=0.01) between F. solani-suppressive and conducive soil. The microbial numbers of total bacteria, total fungi, actinomycetes and celluloytic fungi were higher in C. destructans-suppressive soil than conducive soil, whereas celluloytic bacteria were about 2 times lower. On the other hand, the microbial numbers of total fungi were higher in R. solani-suppressive soil than conducive soil, whereas total bacteria, actinomycetes, celluloytic bacteria and celluloytic fungi were lower. Fourteen of 16 F. solani-suppressive soils tested were suppressive to ginseng root rot, whereas fifteen of 16 C. destructans-suppressive soils were suppressive. Ginseng root rots of ginseng disease-suppressive soils were in the range of 1.0-17.4% in F. solani-suppressive soil and 0.2-20.4% in C. destructans-suppressive soil, respectively.

  • PDF