• Title/Summary/Keyword: Organic matter mineralization

Search Result 72, Processing Time 0.023 seconds

Change of Organic Rice Yield as Affected by Surface and Broadcast Fertilizer Applications (유기질비료의 표층 및 전층시비에 따른 벼 수량 변화)

  • Kim, Hyun-Woo;Choi, Hyun-Sug;Kim, Byeong-Ho;Kim, Hong-Jae;Choi, Kyeong-Ju;Chung, Doug-Young;Lee, Youn;Park, Kwang-Lai;Jung, Seok-Kyu
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.1
    • /
    • pp.81-89
    • /
    • 2012
  • This study was investigated to evaluate the effects of fertilizer application of surface and broadcast for rice culture on the soil chemical, physical, and microbial properties as well as growth and yield of rice. The application was made with 'Dongjin 1' rice at Jeollanam-do Agricultural Research & Extension Services from 2008 to 2010. Soil organic matter and cation concentrations were increased by surface and broadcast applications, respectively. Plots treated by surface application tended to be higher seasonal N-mineralization rate in the organic fertilizer and seasonal soil organic matter than those of broadcast application. Soil physical properties seemed to be improved by the broadcast application, and soil microbial properties were increased by the surface application. Surface application increased 5% of rice yield compared to that of broadcast.

Biodegradation of Dissolved Organic Matter Derived from Animal Carcass Disposal Soils Using Soil Inhabited Bacteria (토양 서식 미생물을 이용한 가축사체 매몰지 토양유래 용존 유기물 분해)

  • Park, Jeong-Ann;Kang, Jin-Kyu;Kim, Jae-Hyun;Kim, Song-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.861-866
    • /
    • 2013
  • The aim of this study was to investigate the biodegradation of dissolved organic matter derived from animal carcass disposal soil using soil inhabited bacteria and to identify the bacteria involved in the biodegradation. The two soils were obtained from the animal carcass burial sites located in Anseong, Gyeonggi-do, Korea. The results indicated that during the biodegradation experiments (56 days), 48% of dissolved organic carbon (DOC) was mineralized within 13 days in soil-derived solution 1 (initial DOC = 19.88 mgC/L), and the DOC concentration at 56 days was $8.8{\pm}0.4$ mg C/L, indicating 56% mineralization of DOC. In soil-derived solution 2 (initial DOC = 19.80 mgC/L), DOC was mineralized drastically within 13 days, and the DOC concentration was decreased to $6.0{\pm}0.4$ mg C/L at 56 days (76% mineralization of DOC). Unlike DOC value, the specific UV absorbance ($SUVA_{254}$) value, an indicator of proportion of aromatic structures in total organic carbon, tended to increase until 21 days and then decreased thereafter. The $SUVA_{254}$ values in soil-derived solutions 1 and 2 were the highest at 21 days. The microbial analysis demonstrated that Pseudomonas fluorescens, Achromobacter xylosoxidans, Nocardioides simplex, Pseudomonas mandelii, Bosea sp. were detected at 14 days of incubation, whereas Pseudomonas veronii appeared as a dominant species at 56 days.

Overview of Coffee Waste and Utilization for Biomass Energy Production in Vietnam

  • Thriveni, Thenepalli;Kim, Minsuk;Whan, Ahn Ji
    • Journal of Energy Engineering
    • /
    • v.26 no.1
    • /
    • pp.76-83
    • /
    • 2017
  • In this paper, the carbon resources recycling of the overview of coffee waste generation in Vietnam. Since few years, there has been a significant research studies was done in the areas of coffee waste generation areas and also waste water generation from coffee production. The coffee residue (solid) and waste water (liquid) both are caused the underground water contamination and also soil contamination. These residues contain high organic matter and acid content leads to the severe threat to environment. In second stage of coffee production process, the major solid residue was generated. Various solid residues such as spent coffee grounds, defective coffee beans and coffee husks) pose several environmental concerns and specific problems associated with each type of residue. Due to the unlimited usage of coffee, the waste generation is high. At the same time, some researchers have been investigated the spent coffee wastes are the valuable sources for various valuable compounds. Biodiesel or biomass productions from coffee waste residues are the best available utilization method for preventing the landfill problems of coffee waste residues.

Growth and Soil Chemical Property of Small Apple Trees as Affected by Organic Fertilizers and Mulch Sources (비료원과 멀칭재료에 따른 사과 유묘의 생장 및 토양이화학성 변화)

  • Choi, Hyun-Sug;Rom, Curt;Lee, Youn;Cho, Jung-Lai;Jung, Seok-Kyu;Jee, Hyeong-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • BACKGROUND: This study was conducted to evaluate the effects of the fertilizer sources and ground cover mulches on nutrient release, growth, and photosynthesis in small one-year-old apple (Malus ${\times}$ domestica Borkh.) trees in controlled conditions. METHODS AND RESULTS: Treatments included no fertilizer (NF), commercial organic fertilizer (CF), and poultry litter (PL) for fertilizer treatments, and wood chips (WC), shredded paper (SP), green compost (GC), and grass clippings (GR) for cover mulch treatments. All treatments were applied proportionally based on the volume ratio equivalent to the soil. CF, PL, and GR treatments that had optimum carbon (C) and nitrogen (N) ratios (less than 30:1) for N mineralization through the microbes released the greatest $NH_4^+$ concentrations in the pot media at 90 days after the treatments, but GC mulch with the optimum C:N ratio did not. CF-, PL- and GR-treated plants had the largest leaf area, thickest stem diameter, longest shoot extension, and greater dry matter production. CONCLUSION(s): CF and PL showed an suitable organic nutrient source for improving plant growth in an orchard. Interestingly, GR also could be a nutrient source for tree growth, if vegetation competition is controlled by maintaining vegetation height and recycling enough grass clippings to the soil in an orchard.

Nitrogen Mineralization and Dynamics in the Forest Soil (삼림토양의 질소 무기화와 무기질소의 동태)

  • Mun, Hyeong-Tae
    • The Korean Journal of Ecology
    • /
    • v.14 no.3
    • /
    • pp.317-325
    • /
    • 1991
  • Mineral nitrogen dynamics and net mineralization of nitrogen in oak(quercus accutissima) and pine(pinus rigida) forest soils were studied. Nitrogen mineralization was determined over 8-week period by incubation method at laboratory. Initial water content of incubating soils was adjusted by applying suction(30mmhg), and lossof water during incubation was recovered with deionized water using syringe at every 3 or 4days. Temperature of incubator was maintained with 35+0.3c during the incubation period. Content of organic matter, total nitrogen, nh4-n and no3-n in soils in oak stand were significantly highter than those in pine stand. soil ph was lower in pine stand than in oak stand. initial nh4-n and no3-n of soils used in incubation experiment were 12.6 ug/g and 6.5 ug/g for oak stand, and 5.3ug/g and 5.1 ug/g for pine stand, respectively. Production of nh4-n increased from the beginning st both stands, and showed a peak at 5th week in oak stand(28.5 ug/g) and 6th week in pine stand(16.7 ug/g), and then decreased. intial no3-n of soils in oak(6.5 ug/g) and pine(5.1ug/g)stands, increased to 36.2 ug/g in soils of oak stand(5th week) and 13.4 ug/g in pine stand(4th week), respectively. The low values of no3-n of the field soil in the growing season compared with those of incubating soils at both stands indicate that considerable amount of nh4-n and no3-n produced in soils of oak and pine stands during two-months incubation were 59.7 and 141.6mg/kg soil, and 51.9 and 41.2mg/kg soil, respectively.

  • PDF

Rates of Anaerobic Carbon Mineralization and Sulfate Reduction in Association with Bioturbation in the Intertidal Mudflat of Ganghwa, Korea (강화도 남단 갯벌의 혐기성 유기물 분해능과 황산염 환원력 및 저서 동물이 이에 미치는 잠재적 영향)

  • Mok, Jin-Sook;Cho, Hye-Youn;Hyun, Jung-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.38-46
    • /
    • 2005
  • This study was carried out to quantify the rates of anaerobic mineralization and sulfate reduction, and to discuss the potential effects of benthic fauna on sulfate reduction in total anaerobic carbon respiration in Ganghwa intertidal flat in Korea. Anaerobic carbon mineralization rates ranged from 26 to 85 mmol $C\;m^{-2}\;d^{-1}$, which accounted for approximately 46 tons of daily organic matter mineralization in the intertidal flat of southern part of the Ganghwa Island (approximately $90\;km^2$). Sulfate reduction ranged from 22.6 to 533.4 nmol $cm^{-3}\;d^{-1}$, and were responsible for $31{\sim}129%$ of total anaerobic carbon oxidation, which indicated that sulfate reduction was a dominant pathway for anaerobic carbon oxidation in the study area. On the other hand, the partitioning of sulfate reduction in anaerobic carbon mineralization in October decreased, whereas concentrations of Fe(II) in the pore water increased. The results implied that the re-oxidation of Fe(II) in the sediments is stimulated by macrobenthic activity, leading to an increased supply of reactive Fe(II), and thereby increasing Fe(III) reduction to depress sulfate reduction during carbon oxidation.

Mineralogical and Geochemical Studies of Uranium Deposits of the Okchon Group in Southwestern District off Taejon, Korea (대전서남지대(大田西南地帶)에 있어서의 옥천대(沃川帶) 우라늄광상(鑛床)에 대(對)한 광물학적(鑛物學的) 및 지화학적(地化學的) 연구(硏究))

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.17 no.4
    • /
    • pp.289-298
    • /
    • 1984
  • Uraniferous black slates of the Okchon sequence occur in Koesan (northeast) through Miwon-Boun (middle) to the southwest off Taejon (southwest) within the Okchon fold belt. The Uraniferous balck slates in the southwest off Taejon are particularly well developed in Chubu (northeast) and Moksso-ri (middle) areas whereas they are less developed in Jinsan (southwest) area. The uraniferous beds range from less than a meter to 40 meters in thickness and range from less than 0.02% $U_3O_8$ (cut-off-grade) to 0.05% $U_3O_8$ in the southwestern district off Taejon. Electron microprobe analysis of uranium-minerals found in graphitic slate samples enables to estimate their major compositions semi-quantitatively so that uraninite, ferro-uranophane and chlopinite are tentatively identified. Uranium-minerals are closely associated with carbon and metal sulfides. Correlation analysis of trace element concentrations revealed that U and F.C., and U and Mo are lineary correlative respectively and their correlation coefficients are positively high whereas those of U and V, U and Mn, and U and Zr are negatively low, implying that uranium mineralization has been closely related with concentrations of carbon and molybdenum. Stable isotope analyses of pyrite sulfur range widely from +11.5% to -23.3% in ${\delta}^{34}S$ values whereas those of graphite carbon fall within a narrow range between -23.3% and -28.9% in ${\delta}^{13}C$ values. The wide range of ${\delta}^{34}S$ values suggests that the sulfur could be of meteoric origin rather than of igneous source. The narrow range of ${\delta}^{13}C$ values, which are close to those of coal, indicates that the graphite is organic carbon in origin. Therefore, it is concluded that the uranium mineralization in the Okchon sequence took place primarily in sedimentary environment rich in organic matter and sulfide ion, both of which served as the reducing agents to convert soluble uranyl complex to insoluble uranium dioxide.

  • PDF

Effects of Food Waste Compost and Mineral Nitrogen Application Level on Dry Matter Yield of Orchardgrass(Dactylis glomelata L.) (음식쓰레기 퇴비와 무기태 질소의 시용수준이 Orchardgrass의 건물수량에 미치는 영향)

  • Lee, Jusam;Jo, Ikhwan;Chang, Kiwoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.2
    • /
    • pp.81-93
    • /
    • 1998
  • In order to estimate the an adequate application level for dry matter production of orchardgrass(Dactylis glomerata L.) were investigated in different application levels of food waste compost and mineral nitrogen in 3 cuttings per annum, and to evaluated the soil improving effect of food waste compost. Annual food waste compost and mineral nitrogen were applied at levels of 0, 10, 20, 40 and $60ton\;ha^{-1}$, and 0, 90, 180 and $270kg\;ha^{-1}$, respectively. Significantly higher dry matter yield of orchardgrass obtained were ranges of $8.92{\sim}9.70ton\;ha-1$ at levels of $180{\sim}270kg\;ha^{-1}\;yr^{-1}$ than that of other levels of mineral nitrogen. Relative yield of each cut to annual dry matter yield were 32.0% 49.2% and 18.8% for 1st cut, 2nd cut and 3rd cut in mineral nitrogen treatment. Significantly higher dry matter yield of orchardgrass obtained were ranges of $8.04{\sim}8.90ton\;ha^{-1}$ at levels of $20{\sim}60ton\;ha^{-1}\;yr^{-1}$ than that of other levels of food waste compost. The efficiency of dry matter production to application of mineral nitrogen(kg DM $kg^{-1}$ N) were 21.2, 19.0 and 15.6kg at levels of 90, 180 and $270kg\;ha^{-1}\;yr^{-1}$, respectively. Higher efficiency of dry matter Production obtained were 27.6~20.2 kg at levels of $90{\sim}180kg\;ha^{-1}$ of mineral nitrogen applied to $20ton\;ha^{-1}$ of food waste compost, it may due to accelerated mineralization by mineral nitrogen application. Highest efficiency of dry matter production to application of food waste compost (kg DM $ton^{-1}$ FWC) obtained was 71.0 kg at level of $40ton\;ha^{-1}\;yr^{-1}$. Maximum dry matter yield of orchardgrass obtained were $9.98ton\;ha^{-1}$ at limiting level of mineral nitrogen of $358.5kg\;ha^{-1}$ and $9.12ton\;ha^{-1}$ at limiting level of food waste compost of $49.3ton\;ha^{-1}$ per annum, respectively. Ranges of $20{\sim}49.3ton\;ha^{-1}$ of food waste compost and $180{\sim}358.5kg\;ha^{-1}$ of mineral nitrogen were estimated an adequate levels for increase in dry matter production, and to maintenance for orchardgrass pastures. Application of food waste compost was affected to improve the soil characteristics.

  • PDF

Oyster Shell waste is alternative sources for Calcium carbonate (CaCO3) instead of Natural limestone

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Nam, Seong Young;Kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.1
    • /
    • pp.59-64
    • /
    • 2018
  • In this paper, we investigated the alternative sources of limestone. Oyster shell waste originated from aquaculture that causes a major disposal landfill problem in coastal sectors in southeast Korea. Their inadequate disposal causes a significant environmental problems araised. Bio mineralization leads to the formation of oyster shells and consists $CaCO_3$ as a major phase with a small amount of organic matter. It is a good alternative material source instead of natural lime stone. The utilization of oyster shell waste for industrial applications instead of natural limestone is major advantage for conservation of natural limestone. The present work describes the limestone and oyster shells hydraulic activity and chemical composition and characteristics are most similar for utilization of oyster shell waste instead of natural limestone.

Effects of Organic Materials and Precipitation on Nitrogen Uptake Efficiency in Sorghum ${\times}$ Sudangrass Hybrid (유기자재와 강수량이 수수${\times}$수단그라스 교잡종의 질소이용효율에 미치는 영향)

  • Choi, Hyun-Sug;Lee, Youn;Jung, Jung-Ah;Jee, Hyeong-Jin;Lee, Sang-Min;Kuk, Yong-In;Jung, Seok-Kyu
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.3
    • /
    • pp.357-368
    • /
    • 2012
  • This study was conducted to evaluate soil inorganic N concentrations and N uptake efficiency of sorghum ${\times}$ sudangrass hybrid (Sorghum bicolor (L.) Moench) as affected by organic nutrient sources from 2009 to 2011. The treatments included chemical fertilizer, compost, oilcake, alfalfa hay mulch, and control. Nutrient applications were made at rates equivalent to approximately 210 kg of actual N per hectare. The precipitation during the growth period from May to September was higher in 2011, followed by 2009, and 2010. Oilcake had the lowest C:N ratio in the raw materials. Compost treatment slowed N-mineralization rate in soil during the measured years. Soil mineral nutrition and dry matter production were not consistently affected by treatments, but the dry matter production was negatively correlated with the amount of precipitation from May to September for three years. Chemical fertilizer treatment increased N efficiency in plants in the first two years, observing with lower N efficiency in plants treated with compost for 3 years. Increased precipitation from June to August improved N efficiency in sudangrass plants treated with compost but reduced the efficiency with the chemical fertilizer. Total dry matter production and N efficiency in plants were not affected by the C:N ratio of the raw materials rather than weather condition.