Browse > Article

Rates of Anaerobic Carbon Mineralization and Sulfate Reduction in Association with Bioturbation in the Intertidal Mudflat of Ganghwa, Korea  

Mok, Jin-Sook (Marine Microbiology Laboratory, Korea Ocean Research and Development Institute)
Cho, Hye-Youn (Marine Microbiology Laboratory, Korea Ocean Research and Development Institute)
Hyun, Jung-Ho (Marine Microbiology Laboratory, Korea Ocean Research and Development Institute)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.10, no.1, 2005 , pp. 38-46 More about this Journal
Abstract
This study was carried out to quantify the rates of anaerobic mineralization and sulfate reduction, and to discuss the potential effects of benthic fauna on sulfate reduction in total anaerobic carbon respiration in Ganghwa intertidal flat in Korea. Anaerobic carbon mineralization rates ranged from 26 to 85 mmol $C\;m^{-2}\;d^{-1}$, which accounted for approximately 46 tons of daily organic matter mineralization in the intertidal flat of southern part of the Ganghwa Island (approximately $90\;km^2$). Sulfate reduction ranged from 22.6 to 533.4 nmol $cm^{-3}\;d^{-1}$, and were responsible for $31{\sim}129%$ of total anaerobic carbon oxidation, which indicated that sulfate reduction was a dominant pathway for anaerobic carbon oxidation in the study area. On the other hand, the partitioning of sulfate reduction in anaerobic carbon mineralization in October decreased, whereas concentrations of Fe(II) in the pore water increased. The results implied that the re-oxidation of Fe(II) in the sediments is stimulated by macrobenthic activity, leading to an increased supply of reactive Fe(II), and thereby increasing Fe(III) reduction to depress sulfate reduction during carbon oxidation.
Keywords
Anaerobic Carbon Mineralization; Sulfate Reduction; Ganghwa Intertidal Mudflat; Bioturbation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Isaksen, M.F., and K. Finster, 1996. Sulphate reduction in the rootzone of the seagrass Zostera noltii on the intertidal faits of a coastal lagoon(Arcachon, France). Mar. Ecol. Prog. Ser., 137: 187-194   DOI
2 Kostka, B. Thamdrup, R.N. Glud, D.E. Canfield, 1999. rates and pathways of carbon oxidation in permanently cold Arctic sediments. Mar. Ecol. Prog. Ser., 180: 7-21   DOI   ScienceOn
3 Kristensen, E. and K. Hansen 1999. Transport of carbon dioxide and ammonium in bioturbated (Nereis diversicolor) coastal, marine sediments. Biogeochemistry 45: 147-168
4 Marvin-DiPasquale M.C. and D.G. Capone, 1998. Benthic sulfate reduction along the Chesapeake Bay central channel. I. Spatial trends and controls. Mar. Ecol. Prog. Ser., 168: 213-28   DOI
5 우한준, 제종길, 2002. 강화 남부 갯벌의 퇴적환경 변화, Ocean and Polar Research, 24: 331-343   DOI
6 해양수산부, 1998. 우리나라의 갯벌, pp. 28
7 현정호, 목진숙, 조혜연, 조병철, 최중기, 2004. 하계 강화도 갯벌의 혐기성 유기물 분해능 및 황산염 환원력. 한국습지학회, 6: 117-132
8 황청연, 조병철, 2005. 산소미세전극을 이용한 강화군과 인천 북항조간대 갯벌의 순광합성률 측정, 한국해양학회지 바다, in press
9 Aller, R.C., 1994. Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chemical Geology, 114: 331-345   DOI   ScienceOn
10 Farias, L., L.A. Chuecas and M.A. Salamanca, 1996. Effect of coastal upwelling on nitrogen regeneration from sediments and ammonium supply to the water column in Conception Bay, Chile. Estuarine, Coastal and Shelf Science, 43: 137-155   DOI   ScienceOn
11 Fossing, H. and B.B. Jorgensen, 1989. Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction method. Biogeochem., 8: 205-222
12 Hansen, K, G.M. King and E. Kristensen, 1996. Impact of the softshell clam Mya arenaria on sulfate reduction in an intertidal sediment. Aquat. Microb. Ecol. 10: 1815-194
13 Hansen, K and E. Kristensen, 1997. Impact of macrofaunal recolonization on benthic metabolism and nutrient fluxes in a shallow marine sediment previously overgrown with macroalgal mats. Estuarine, Coastal and Shelf Science, 45: 613-628   DOI   ScienceOn
14 Kristensen, E., F.O. Anderson, N. Holmboe, M. Holmer, and N. Thongtham, 2000. Carbon and nitrogen mineralization in sediments of the Bangrong mangrove area, Phuket, Thailand. Aquat. Microb. Ecol. 22: 199-213   DOI   ScienceOn
15 Capone, D.G. and R. Kiene, 1988. Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in anaerobic carbon catabolism, Limnol. Oceanogr., 33: 725-749   DOI   ScienceOn
16 Stookey, L.L., 1970. Ferrozine-a new spectrophotometric reagent for iron. Anal. Chem. 42: 779-781   DOI
17 Jorgensen, B.B., 1982. Mineralization of organic matter in the sea bed - the role of sulphate reduction. Nature, 96: 643-645   DOI
18 Kostka, J.E., A. Roychoudhury, and P. Van Cappellen, 2002a. Rates and controls of anaerobic microbial respiration across spatial and temporal gradients in saltmarsh sediment., Biogeochem., 60: 49-76   DOI   ScienceOn
19 Canfield, D.E., B. Thamdrup, and J.W. Hansen, 1993. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochimica et Cosmochimica Acta., 57: 3869-3883
20 Kristensen E. and M. Holmer, 2001. Decomposition of plant materials in amrine sediment exposed to different electron acceptors ($O_{2}$ $NO_{3}^{-}$ and $SO_{4}^{2-}$), with emphasis on substrate origin, degradation kinetics, and the role of bioturbation. Geochimica et Cosmochimica Acta. 65: 419-433   DOI   ScienceOn
21 Kristensen, E., A.H. Devol, S.I. Ahmed, and S. Monawwar, 1992. Preliminary study of benthic metabolisms and sulfate reduction in a mangrove swamp of the Indus Delta, Pakistan. Mar. Ecol. Prog. Ser, 90: 287-297   DOI
22 Jorgensen, B.B., 1978. A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments, 1. Measurement with radiotracer techniques, Geomicrobiol. J., 1: 11-28   DOI   ScienceOn
23 Gribsholt B., J.E. Kostka, and E. Kristensen, 2003. Impact of fiddler crabs and plant roots on sediment biogeochemistry in a Georgia saltmarsh. Mar. Ecol. Prog. Ser., 259: 237-251   DOI
24 Hall, P.O., and R.C. Aller, 1992. Rapid small-volume, flow injection analysis for $CO_{2}$ and $NH_{4^{+}}$ in marine and freshwaters, Limnol. Oceanogr, 37: 113-119
25 Nedwell, D.B., T.H. Blackburn, and W.J. Wiebe, 1994. Dynamic nature of the turnover of organic carbon, nitrogen and sulphur in the sediments of a Jamaican mangrove forest. Mar. Ecol. Prog. Ser, 110: 223-231   DOI
26 현정호, 이홍금, 권개경, 2003. 해양환경의 황산염 환원율 조절요인 및 유기물 분해에 있어 황산염 환원의 중요성. 한국해양학회지 바다, 8: 210-224
27 Bagarinao, T., 1992. Sulfide as an environmental factor and toxicant: tolerance and adaptation in aquatic organisms. Aquatic Toxicology, 24: 21-62   DOI   ScienceOn
28 Nielsen O.I., E. Kristensen, and M. Holmer, 2003. Impact of Arenicola marina (Polychaeta) on sediment sulfur dynamics. Aquat. Microb. Ecol. 33: 95-105   DOI   ScienceOn
29 Hansen, K and E. Kristensen., 1998. The impact of the polychaete Nereis diversicolor and enrichment with macroalgal (Chaetomorpha linum) detritus on benthic metabolosm and nutrient dynamics in organic-poor and organic-rich sediment. J. Exp. Mar. Biol. Ecol., 231: 201-223   DOI   ScienceOn
30 Jahnke and Craven, 1995. Quantifying the role of heterotrophic bacteria in the carbon cycle: A need for respiration rate measurements, Limnol. Oceanogr., 40: 436-441   DOI   ScienceOn
31 Holmer, M., 1996. Composition and fate of dissolved organic carbon derived from phytoplankton detritus in coastal marine sediments. Mar. Ecol. Prog. Ser., 141: 217-228   DOI
32 Giblin, A.E., C.S. Hopkinson and J. Tucker, 1997. Benthic metabolism and nutrient cycling in Boston Harbor, Massachusetts, Estuaries, 20: 346-364   DOI   ScienceOn
33 Alongi, D.M., 1995. Decomposition and recycling of organic matter in muds of the Gulf of Papua, northern Coral Sea. Continental Shelf Research, 15: 1319-1337   DOI   ScienceOn
34 Koretsky, C.M., C.M. Moore, K.L. Lowe, C, Meile, T.J. Dichristina and P. van Cappellen, 2003. Seasonal oscillation of microbial iron and sulfate reduction in saltmarsh sediments (Sapelo Island, GA, USA), Biogeochem., 64: 179-203   DOI   ScienceOn
35 Kostka, J.E., B. Gribsholt, E. Petrie, D. Dalton, H. Skelton, and E. Kristensen, 2002b. The rates and pathways of carbon oxidation in bioturbated saltmarsh sediments, Limnol. Oceanogr.,47: 230-240   DOI   ScienceOn
36 Parsons, T.R., Y. Maita, and C.M. Lalli, 1984. A mannual of chemical and biological methods for seawater analysis, Pergamon press, 173 pp
37 우한준, 박장준, 이연구, 제종길, 최재웅, 2004. 한국 서해 강화갯벌의 퇴적물 특성. 한국습지학회지, 6: 167-178
38 Arnosti, C, B.B. Jorgensen, J. Sagemann, and B. Thamdrup, 1998. Temperature dependence of microbial degradation of organic matter in marine sediments: polysaccharide hydrolysis, oxygen consumption, and sulfate reduction. Mar. Ecol. Prog. Ser., 165: 59-70   DOI
39 Heilskov, A.C. and M. Holmer, 2001. Effects of benthic fauna on organic matter mineralization in fish-farm sediments: importance of size and abundance. J. Marine Science, 58: 427-434
40 Gribsholt, B. and E. Kristensen, 2002. Effects of bioturbation and plant roots on salt marsh biogeochemistry: a mesocosm study. Mar. Ecol. Prog. Ser., 241: 71-87   DOI
41 고철환, 2001. 한국의 갯벌, 서울대학교 출판부, pp. 1073
42 Pomeroy, L.R, W.J. Wiebe, D. Deibel, R.J. Thompson, G.T. Rowe, and J.D. Pakulski, 1991. Bacterial responses to temperature and substrate concentration during the Newfoundland spring bloom. Mar. Ecol. Prog. Ser., 75: 143-159   DOI
43 Dollar, S.J., S.V. Smith, S.M. Vink, S. Obrebski, and J.T. Hollibaugh, 1991. Annual cycle of benthic nutrient fluxes in Tomales Bay, California, and contribution of the benthos to total ecosystem metabolism. Mar. Ecol. Prog. Ser., 79: 115-125   DOI