• Title/Summary/Keyword: Organic matter dynamics

Search Result 70, Processing Time 0.025 seconds

Comparison of Organic Matter Dynamics between Natural Deciduous Broad-Leaved Forest and Adjacent Artificial Evergreen Coniferous Forest

  • Takahiro, Ichikawa;Terumasa, Takahashi;Yoshito, Asano
    • The Korean Journal of Ecology
    • /
    • v.27 no.4
    • /
    • pp.217-224
    • /
    • 2004
  • The purpose of this study is to clarify the effects of the conversion of the forest management type from a natural deciduous broad-leaved forest to an artificial evergreen coniferous forest based on organic matter dynamics. We investigated the amounts and carbon contents of the forest floor and the litterfall, soil chemical characteristics and cellulose decomposition rates in the natural deciduous broad-leaved forest and adjacent artificial evergreen coniferous forest. In the artificial evergreen coniferous forest were planted Japanese cypress (Chamaecyparis obtusa) on the upper slope and Japanese cedar (Cryptomeria japonica) on the lower slope. The soil carbon and nitrogen contents, CEC and microbial activity had decreased due to the conversion of the forest management type from a natural deciduous broad-leaved forest to an artificial Japanese cypress forest, and were almost the same for the conversion to a Japanese cedar forest. Under the same conditions, it is considered that the soil fertility was different by planting specific tree species because the organic matter dynamics were changed by them.

Accumulated organic matter, litterfall production, and decomposition tell us the status of litter dynamics in forests

  • Kim, Jae-Geun
    • Journal of Ecology and Environment
    • /
    • v.35 no.2
    • /
    • pp.99-109
    • /
    • 2012
  • Litterfall dynamics in forests are assessed by estimating biomass production and decomposition. However, there have been few studies on how litter dynamics impact the health and management of ecosystems. Here, a new approach to measure and assess ecosystem function is presented based on conventional methods using littertraps, litterbags, and the mass on the forest floor. To assess the status of litter dynamics, the decay rate (k) was estimated from a litterbag experiment, and removal rates ($k_i$) were determined from mass balance on the forest floor at 21 sites on three mountains in South Korea. The $k_3$ (organic mass ratio of $O_i$ and $O_e+O_a$ + A horizons in November) values in an equilibrium state in South Korea were within the range of $k{\pm}0.174$ when considering the annual variation of litterfall production. This study also suggests that sampling sites for these types of studies should be in the middle, not at the ends, of steady slopes on the forest floor.

Early Effect of Environment-friendly Harvesting on the Dynamics of Organic Matter in a Japanese Larch (Larix leptolepis) Forest in Central Korea (중부지역 일본잎갈나무림의 친환경벌채가 산림 내 유기물 변화에 미치는 초기 영향)

  • Wang, Rui Jia;Kim, Dong Yeob
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.473-481
    • /
    • 2022
  • Environment-friendly harvesting is practiced to maintain ecosystem, landscape, and forest protection functions. The present study was conducted at Simgok-ri, Sinbuk-myeon, Pocheon, Gyeonngi-do, where a 41-50-year-old Japanese larch forest was harvested in an environment-friendly manner from 2017 to 2019. The dynamics of organic matter in this forest were investigated at three years after the harvest. Specifically, organic matter content was measured on the forest floor and in overstory biomass, litterfall, and soil up to 30 cm in depth from June 2020 to January 2021. Owing to the harvest, the amount of overstory biomass of the Japanese larch stands decreased from 142.22 to 44.20 t ha-1. On the forest floor, the amount of organic matter was 32.87 t ha-1 in the control plots and 23.34 t ha-1 in the harvest plots. Annual litterfall was 4.43 t ha-1 yr-1 in the control plots and 1.16 t ha-1 yr-1 in the harvest plots. Soil bulk density in the B horizon was 0.97 g cm-3 in the control plots and 1.06 g cm-3 i n the harvest plots. Soil organic matter content was 11.5% in the control plots and 12.8% in the harvest plots. The total amount of soil organic matter did not differ significantly between the control plots (245.21 t ha-1) and harvest plots (263.92 t ha-1), although the amount of soil organic matter tended to be higher in the harvest plots. The total amount of organic matter in the forest was estimated to be 406.48 t ha-1 in the control plots and 338.21 t ha-1 in the harvest plots. In the harvest plots, the ratio of aboveground organic matter decreased to 13.1% and soil organic matter increased to 78.0%, indicating that the distribution of organic matter changed significantly in these plots. Overall, the carbon accumulated in aboveground biomass was substantially reduced by environment-friendly harvesting, whereas the soil carbon level increased, which played a role in mitigating the reduction of system carbon in the forest. These results highlight one possible resolution for forest management in terms of coping with climate change. However, given that only three years of environment-friendly harvesting data were analyzed, further research on the dynamics of organic matter and tree growth is needed.

The Gram-Stain Characteristics of the Bacterial Community as a Function of the Dynamics of Organic Debris in a Hypereutrophic Lake (과 부영양형 호수의 유기물 변동에 따른 박테리아 군집의 그램 염색 특성)

  • Kang, Hun
    • 한국해양학회지
    • /
    • v.24 no.3
    • /
    • pp.148-156
    • /
    • 1989
  • This investigation was performed in eutrophic lake within the framework of a series of studies to evaluate the significance of gram reaction for both bacterioplankton and attached bacteria in the dynamics of organic materials at various aquatic ecosystems. In Lake Kasumigaura as a representative of the highly eutrophic freshwater environments, the gram-stain characteristics of the bacterial community changed with the influx of pulses of phytoplankton, as those in the meso trophic environments. The predominency of the gram-negative forms in the bacterial community was about 57% for bacterioplankton and about 53% for attached bacteria. The statistical analysis of the difference of these two distributions showed that these communites were different. Both gram-negative and gram-positive bacteria attached to particles were shown to effect the formation and degradation of particulate organic matter. Gram-negative bacteria plankton participate exclusively in the dynamics of dissolved organic matter.

  • PDF

Effect of Decomposition on Nitrogen Dynamics in Soil Applied with Compost and Rye

  • Ko, Byong-Gu;Kim, Myung-Sook;Park, Seong-Jin;Yun, Sun-Gang;Oh, Taek-Keun;Lee, Chang Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.648-657
    • /
    • 2015
  • Soil organic matter (SOM) plays an important role in the continuous production and environmental conservation in arable soils. In particular, the decomposition of organic matter in soil might promote soil organic matter and fertility due to the mineralization of N. In this study, to evaluate the effect of organic matter amendment on the C mineralization and N dynamic, $CO_2-C$ flux, extractable N and $N_2O$ emission were determined using closed chamber for 4 weeks at 10, 15, $20^{\circ}C$ of incubation temperature after the mixture of $2Mgha^{-1}$ rice straw compost and rye in sandy loam and clay loam. Regardless of soil texture, decomposition rates of rice straw compost and rye at $10{\sim}20^{\circ}C$ of incubation temperature ranged from 0.9 to 3.8% and 8.8 to 20.3%, respectively. Rye application in soil increased $NH_4-N$ and $NO_3-N$ content as well as the $N_2O$ emission compared to the rice straw compost. After incubation for 4 weeks, total C content in two soils was higher in rice straw compost than in rye application. In conclusion, application of rice straw compost and rye to soil was able to improve the soil organic matter and fertility. However, organic matter including the recalcitrant compounds like rice straw compost would be effective on the management of soil organic matter and the reduction of greenhouse gases in soil.

Modelling N Dynamics and Crop Growth in Organic Rice Production Systems using ORYZA2000 (ORYZA2000을 이용한 유기 벼 재배 시스템의 질소 동태 및 벼 생육 모의)

  • Shin, Jae-Hoon;Lee, Sang-Min;Ok, Jung-Hun;Nam, Hong-Sik;Cho, Jung-Lai;An, Nan-Hee;Kim, Kwang-Su
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.4
    • /
    • pp.805-819
    • /
    • 2017
  • The study was carried out to develop a mathematical model for evaluating the effect of organic fertilizers in organic rice production systems. A function to simulate the nitrogen mineralization process in the paddy soil has been developed and integrated into ORYZA2000 crop growth model. Inorganic nitrogen in the soil was estimated by single exponential models, given temperature and C:N ratio of organic amendments. Data collected from the two-year field experiment were used to evaluate the performance of the model. The revised version of ORYZA2000 provided reasonable estimates of key variables for nitrogen dynamics and crop growth in the organic rice production systems. Coefficient of determination between the measured value and simulated value were 0.6613, 0.8938, and 0.8092, respectively for soil inorganic nitrogen, total dry matter production, and rice yield. This means that the model could be used to quantify nitrogen supplying capacity of organic fertilizers relative to chemical fertilizer. Nitrogen dynamics and rice growth simulated by the model would be useful information to make decision for organic fertilization in organic rice production systems.

Contribution of Marine Microbes to Particulate Organic Matter in the Korea Strait

  • Kang, Hun;Kang, Dae-Seok
    • Journal of the korean society of oceanography
    • /
    • v.37 no.1
    • /
    • pp.35-44
    • /
    • 2002
  • To assess the relative contribution of bacterial and phytoplankton biomasses to particulate organic matter (POM) in the water column, microbial abundance and biomass were from two transects in the western channel of the Korea Strait in 1996. Bacterial abundance had a mean value of $5.9{\times}10^5$ cells/ml and chlorophyll-a averaged 0.14 ${\mu}g/l$. Bacterial abundance in the Korea Strait showed a positive relationship with chlorophyll-a concentration, while the distribution of POM did not covary with chlorophyll-a. Particulate organic carbon (POC) and nitrogen (PON) concentrations were greater in August than in October. Bacterial carbon (POC) and nitrogen (PON) concentrations were greater in August than in October. Bacterial carbon and nitrogen biomasses were 7.29 ${\mu}gC/l$ and 1.24 ${\mu}gN/l$, respectively, during the study periods. Bacterial biomass was larger in October than in August due to the autumn phytoplankton bloom. Phytoplankton biomass based on chlorophyll-a was 7.67 ${\mu}gC/l$ for carbon and 1.10${\mu}gN/l$l for nitrogen. The ratio of bacterial carbon (BC) to phytoplankton carbon (Cp) averaged 0.95 in the Korea Strait in 1996. Bacteria may play a more significant role in the dynamics of POM than phytoplankton do in August, with BC/Cp ratio of 1.26. The ratio of BC to Cp increased with a decrease in chlorophyll-a concentration. Averaged over all the samples in both cruises, the contribution of microbial biomass to POC and PON was about 43% and 51%, respectively. Bacterial assemblage constituted a significant fraction of POC (21%) and PON (27%). Phytoplankton accounted for 22% of POC and 24% of PON. Microbial biomass played a more important role in the dynamics of POC and PON in October than in August due to a significant increase in microbial biomass in the southern transect (transect-B) in October by the autumn phytoplankton bloom. This study showed that marine microbes may constitute a significant part in the reservoir of POM in the Korea Strait.

Spatial Distribution of Dissolved Organic Matter Compositions Upstream of Ipobo (이포보 상류 용존 유기물의 공간적 분포 분석)

  • Yoon, Sang Mi;Choi, Jung Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.399-408
    • /
    • 2018
  • This research investigated the effects of weir (Ipobo) construction on the dynamics and the related spatial distributions of pollutants inflowing from tributaries (Yanghwacheon and Bokhacheon). Conductivity measurements and water sampling were conducted longitudinally, horizontally, and vertically in the waterbody upstream of the area located in Ipobo. Additionally, collected water samples were used for the dissolved organic carbon (DOC) analysis and fluorescence analysis which results in the SUVA, HIX, BIX, and FI calculation and parallel factor analysis (PARAFAC). Consequently, the results of the Conductivity, DOC, SUVA, and HIX showed that high concentration of pollutants that were flowing from the area of Bokhacheon which was mixed along the flow of the main river. The results of the BIX and FI did not show significant difference along the river flow which represented that allochthonous and terrestrial DOM, and for this reason was dominated in the whole waterbody rather than just the autochthonous DOM. The PARAFAC results showed that the two fluorescence components, humic-like and protein-like, constituted the fluorescence matrices of the water samples. The prevailing discipline notes that the two components were inflowing from the tributaries, however, a refractory component, humic-like substances, was relatively accumulated near the weir. From the results, the dynamics and spatial distributions of the DOM are dependent on the DOM characteristics, which induces the application of a specialized DOM analysis method to investigate the effects of a subsequent weir construction on the dynamics and spatial distributions of pollutants inflowing from the tributaries.

Biomass Structure and Dry Matter Dynamics in a Fire Influencing Montane Subtropical Humid Grassland, Western Ghats Southern India

  • Paulsamy, S;Manian, S.;Udaiyan, K.;Arumugasamy, K.;Nagarajan, N.;Kil, B.S.
    • The Korean Journal of Ecology
    • /
    • v.24 no.4
    • /
    • pp.227-232
    • /
    • 2001
  • The biomass structure for three major components viz., the dominant grass, Chrysopogon zeylanicus Thw., the 'other grasses' and the'remaining species'and dry matter dynamics for total community were studied over a period of one year in an annual fire influenced subtropical humid grassland community in Western Ghats, India. The biomass of aboveground, belowground and litter compartments were high as in other humid grasslands and generally have positive correlation with rainfall, rainy days and relative humidity with the exception of litter parts. The above and belowground net primary productions (4,561 and 722 g/㎡, respectively) were also higher and were comparable with other humid tropical grasslands. The turnover of organic matter was rapid, Of the total input of 14.47 g/㎡ into the system, about 86.3% was allocated to above ground parts and 13.7% to below ground parts. The total disappearance was 2.56 g/㎡ and it was accounted to be 17.68% of the total output. The net surplus of dry matter (82.32%) in the post fire community indicates that the grassland was maintained in a seral stage. Hence it is suggested that prescribed burning may keep this ecosystem in a highly productive and seral stage.

  • PDF

소화신산의 화산분화후에 성립한 두메오리나무 임분의 질소무기화와 질화작용 - NH$_{4}$

  • 문현식;춘목아관
    • The Korean Journal of Ecology
    • /
    • v.21 no.6
    • /
    • pp.751-757
    • /
    • 1998
  • Nitrogen dynamics in mineral soils of an alder (Alnus maximowiczii) stand established on volcano Mt. Showa-Shinzan were measured by laboratory incubation method in order to clarify characteristics of $NH_{4}^{+}$ mineralization and nitrification rate, from August 1994 to July 196. Contents of total N and organic matter were relatively low, but increased in May-July. Extractable $NH_{4}^{+}$ concentrations and $NH_{4}^{+}$ mineralization were high in June and July, and decreased in midsummer and fall. Extractable $NO_{3}^{-}$ concentrations did not vary seasonally. Negative values at $NH_{4}^{+}$ mineralization and nitrification rate were observed in August and September. $NH_{4}^{+}$ mineralization was positively correlated with soil organic matter, and nitrification rates were influenced by extractable $NH_{4}^{+}$ concentration and $NH_{4}^{+}$ mineralization.

  • PDF