• Title/Summary/Keyword: Organic loading

Search Result 531, Processing Time 0.023 seconds

Evaluation of Water Quality in the Keum River Estuary by Multivariate Analysis (다변량 해석기법에 의한 금강 하구역의 수질평가)

  • 김종구
    • Journal of Environmental Science International
    • /
    • v.7 no.5
    • /
    • pp.591-598
    • /
    • 1998
  • This study was conducted to evaluate water quality in the Keum River estuary using principal component analysis. The results was summarized as follow; Water quality in the Keum River estuary could be explained up to 70.40% by three factors which were included in the inffluent loading by the Keum River and Kyungpo cheon(38.99%), seasonal variation and organic matter pollution(19.05%), sediment resuspension and internal metabolism(12.35%). For spatial variation of factor score, artificial pollutant loading is highest at st.1, below Keum River barrage, and decreases toward the outer sea. For annual variation of factor score, factor 1 was highly related to artificial pollutant leading, and it was gently increased in 1994. Also, organic matter pollution, sediment resuspension and internal metabolism were increased to every year. It is necessary to control the nutrient leading by Keum river and Kyongpo cheon for Water quality management of estuary.

  • PDF

Operation Characteristics of an UASB at High Organic Loading Condition for Thermal Elutriated Acids of Piggery Wastewater Treatment (가축분뇨 고온 세정산발효액 처리를 위한 고부하 조건에서의 UASB 운전특성)

  • Kwon, Koo-Ho;Jung, Yong Jun;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.781-785
    • /
    • 2012
  • This study was carried out to treat the thermal elutriated acids of piggery wastewater using UASB process. The UASB reactor was operated at an organic loading rate (OLR) of $7.4\;kgCOD/m^3-day$ (6.5 ~ 9.0). During the start-up period, the low COD removal efficiency (20%) was caused by shock loading and instability in the reactor. It was mainly due to the high concentration amounts of ammonia nitrogen, which caused inhibitory and toxic effects to toward the anaerobic bacteria. In steady state, the UASB reactor showed a SCOD removal efficiency of 71% and a VS removal efficiency of 39%. The gas production and methane content were 1.3 L/day $(0.21\;m^3\;CH^4/kg$ COD removed) and 77%, respectively.

Sewage Treatment using Aerated Submerged Biological Filter(ASBF) (호기성 침지형 생물막 여과장치를 이용한 오수처리)

  • Park, Jong-Woong;Song, Ju-seok
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.523-532
    • /
    • 2000
  • The purpose of this study was to investigate the effects of the hydraulic retention time (HRT) and organic loading rate (OLR) on microbial characteristics and treatment efficiency in sewage treatment using aerated submerged biological filter (ASBF) reactor. This reactor combines biodegradation of organic substrates by fixed biomass with a physical separation of biomass by filtration in a single reactor. Both simulated wastewater and domestic wastewater were used as feed solutions. The experimental conditions were a temperature of 17 to $27^{\circ}C$, a hydraulic retention time of 1 to 9hr, an organic loading rate of 0.47 to $3.84kg\;BOD/m^3{\cdot}day$ in ASBF reactor. This equipment could obtain a stable effluent quality in spite of high variation of influent loading rate. Total biomass concentration. biofilm thickness and biofilm mass increased an exponential function according to the increasing OLR. The relationships between water content and biofilm density were in inverse proportion. The percentage of backwash water to influent flow was almost 9%. The separation efficiency of biomass was the percentage of 91 to 92 in ASBF reactor. The sludge production rates in feed solutions of simulated wastewater and domestic wastewater were 0.14~0.26 kg VSS/kg BODrem, 0.43~0.48 kg VSS/kg BODrem, respectively.

  • PDF

Laboratory Study on the Factors Affecting on Initial Anaerobic Biomass Development (혐기성 부착미생물의 초기성장에 미치는 영향인자에 관한 연구)

  • 허준무;박종안;손부순
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.185-194
    • /
    • 1998
  • Laboratory-scale investigation into initial anaerobic biofilm development was carried out by circulating mixed liquor from a steady-state anaerobic reactor through silicone tubing and then rerurning the mixed liquor to the reactor. The wall of the silicone tubing was the surface upon which anaerobic biofilm accumulation or development was monitored. Methanogenic bacteria accumulation was monitored by F$_{420}$ fluorescence (picomoles F$_{420}$/cm$^{2}$) of the extracted biofilm material. Biofilm accumulation was measured by the increase in COD of the extracted material ($\mu $g COD/cm$^{2}$). Experiments were conducted for 25 days, and biofilm analyses were performed at 5 days intervals. The results indicated that the initial rates of methangen and anaerobic biofilm accumulation increased with increasing organic loading rate and higher initial rates were observed for 15 days than 15 day liquid HRT or SRT. When the initial rates were plotted against the corresponding mixed liquor volatile suspended solids the difference between the results at the two HRT's became much less significant. Thus, the concentration of mixed liquor volatile suspended solids was found to be a very important parameter affecting initial anaerobic biofilm development. The ratio of methanogens to anaerobic biofilm was also investigated. The results showed that the ratio remained constant through the 25 days of each experiment and for high organic loading rates. Based on the results of this research, a reduction, a reduction of start-up period of anaerobic fixed film reactors might be achieved by maintaining a high organic loading and a large concentration of anaerobic microorganisms in the mixed liquor during the start-up period.

  • PDF

Nutrients removal enhancement using a modified rotating activated bacillus contactor (RABC) process (수정 RABC 공정을 이용한 영양염류 제거능 제고에 관한 연구)

  • Kim, Sunhee;Kim, Donghwan;Jang, Giung;Kim, Eung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.99-104
    • /
    • 2016
  • This study was performed to develop a new process technology for advanced wastewater treatment using a modified Rotating Activated Bacillus Contactor (RABC) process that adopts anoxic-oxic suspended biomass tanks to enhance nutrients removal. A modified lab-scale RABC process was applied to examine its applicability and to obtain the design factors for the optimum operation of the system. The modified RABC process showed a little more stable and high nutrients removal efficiency than the prototype RABC process: about 70% of nitrogen and 55% of phosphorous removal when the low organic loading (influent COD 200mg/L). However, the processing efficiency of nutrients removal rates was enhanced to great extent when high organic loading: nitrogen 90% and phosphorous 85% (influent COD 500mg/L). High organic loading stimulated extremely good biomass attachment on the reticular carrier RABC stage and the excellent nutrients removal, nevertheless with almost no offensive odor.

Sorption behavior of slightly reduced, three-dimensionally macroporous graphene oxides for physical loading of oils and organic solvents

  • Park, Ho Seok;Kang, Sung Oong
    • Carbon letters
    • /
    • v.18
    • /
    • pp.24-29
    • /
    • 2016
  • High pollutant-loading capacities (up to 319 times its own weight) are achieved by three-dimensional (3D) macroporous, slightly reduced graphene oxide (srGO) sorbents, which are prepared through ice-templating and consecutive thermal reduction. The reduction of the srGO is readily controlled by heating time under a mild condition (at 1 10−2 Torr and 200℃). The saturated sorption capacity of the hydrophilic srGO sorbent (thermally reduced for 1 h) could not be improved further even though the samples were reduced for 10 h to achieve the hydrophobic surface. The large meso- and macroporosity of the srGO sorbent, which is achieved by removing the residual water and the hydroxyl groups, is crucial for achieving the enhanced capacity. In particular, a systematic study on absorption parameters indicates that the open porosity of the 3D srGO sorbents significantly contributes to the physical loading of oils and organic solvents on the hydrophilic surface. Therefore, this study provides insight into the absorption behavior of highly macroporous graphene-based macrostructures and hence paves the way to development of promising next-generation sorbents for removal of oils and organic solvent pollutants.

An Experimental Study on the Treatment of Phenolic Wastewater Using Rotating Biological Contactors (회전원판법(RBC)에 의한 페놀성 폐수의 처리에 관한 실험적 연구)

  • Choung, You Kyoo;Ahn, Kyu Hong;Bae, Bum Han;Min, Byeong Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.173-184
    • /
    • 1990
  • This study is an experimental research on the treatment of phenolic wastes by Rotating Biological Contactors(RBC). The objective of this study is to determine the optimum range of influent phenol concentration and organic loading rate. Organic removal rates were analyzed with increasing organic loading and influent phenol concentration, together with the observation of microorganism. Biomass, SCOD, and phenol concentration were measured under the steady state after a step change of influent phenol concentration. As the result, at the phenol concentration less then 98.8 mg/L there were no evidence of substrate inhibition. As the results, organic removal rates in each stage at various organic loading, were decreased with increasing phenol concentration. First order kinetic was observed on the removal of SCOD for which phenol concentration is within the range of substrate inhibition. And also, microorganisms were changed with influent phenol concentration. Namely, at low influent phenol concentration, thin biofilm with filamentous growth was produced. To the contrary, thick biofilm with nonfilamentous growth was produced at high influent phenol concentration.

  • PDF

Effects of effluent recycling on the operating performance of UASB reactor (유출수 반송이 UASB 반응조 운전효율에 미치는 영향)

  • 이헌모;양병수
    • Journal of Environmental Science International
    • /
    • v.2 no.4
    • /
    • pp.299-310
    • /
    • 1993
  • This study was aimed to evaluate the effects of effluent recycling on the UASB reactor performances at the various organic loading rates and influent substrate concentrations. The organic removal efficiency of the reactors operated with effluent recycle were above 85%. However, the efficiencies of the reactors operated without the recycle were below 40% even though the effort to increase the efficiencies was made by changing the influent substrate concentrations and the organic loading rates, and introducing the effluent recycle at the final stage of the experiment. It was realized that the certain amount of effluent recycling from the start-up stage in UASB reactors seemed to be necessary to provide the effective contact chances between the substrate and granular sludge for better performances of the UASB process.

  • PDF

The Rheological Characteristics of Polymer Sensitive Materials for Organic Gas (유기가스에 대한 고분자 감응성막의 유변학적인 특성)

  • 김정명;김용성;장정수;권영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.31-34
    • /
    • 1996
  • In this paper, the rheological chances in sensitive materials was investigated by using QCA(Quartz Chemical Analyzer). Langmuir-Blodgett method was used to transfer sensitive material to the quartz crystals because of its facility to control that amount, and deposited sensitive material has uniformity to compare with other methods respectively. For the gas sensor using mass loading effect of quartz crystal microbalance, generally the Sauberary equation has been believed to represent the only mass loading effect. But when the organic gas is adsorpted into sensitive material, the rheological changes are occurred with different pattern as to the kinds of gases. Thus, much simpler method to identify the organic or hazard gas will be obtained by the consideration of resonant frequency changes and resonant admittance changes simultaneously.

  • PDF

Nitrogen Removal in the Multi-stage Bed Attached Growth Process of $A^2/O$ System with Interanal Recycle Ratio (다단층 부착성장 공법($A^2/O$향)에서 순환비에 따른 질소제거)

  • 최규철;윤용수;정일현
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.3
    • /
    • pp.95-102
    • /
    • 1997
  • The process which can stabilize water quality of treatment and improve nitrogen removal rate under the condition of high organic loading was developed by charging fibrous HBC media to single sludge nitrification-denitrification process. This process was operated easier, minimized the treatment cost, and shortened the retention time. To improve T-N removal rate, a part of nitrifing liquid at aerobic zone was recycled to anoxic zone by approximate internal recycle ratio. The experimental results are as follows ; T-N removal efficiency in the organic volumetric loading 0.14-0.19 kg/COD/m$^{3}$·d was obtained asmaxium of 85% at internal recycle ratio 2.5 and in more ratio than this it was decreased. Organic removal efficiency was about 91% under the overall experimental conditions and not influenced by recycle ratio.

  • PDF