• Title/Summary/Keyword: Organic livestock

Search Result 566, Processing Time 0.023 seconds

Recovery of Ammonium Nitrogen and Phosphate from the Piggery Wastewater as Struvite and Its Assessment for the Reduction of Water Pollution Through the Field Test

  • Daeik Kim;Sun Jin Hwang;Su Ho Bae;Keon Sang Ryoo
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.2
    • /
    • pp.83-92
    • /
    • 2023
  • Excess N and P from the livestock manure applied to farmlands, have entered the water systems and poses a serious threat to the natural environment. Consequently, there has been recent awareness towards the management of livestock manure and its related fields. In this study, piggery wastewater was collected from a piggery in Pohang city, Korea. At 800℃, thermal decomposition of a natural stone, magnesite (MgCO3), yielded powered MgO with particle sizes ranging between 10 to 100 ㎛. Furthermore, NH4+-N and PO43--P were recovered as struvite precipitates from the piggery wastewater, by adjusting the pH with MgO and H3PO4. At pH 10, the recovery efficiencies of NH4+-N and PO43--P were found to be 86.1% and 94.1%, respectively. Using an X-ray Diffractometer (XRD), the struvite in the precipitate was confirmed to be consistent with standard pure struvite. Further, the purity of the struvite precipitate was analyzed using an energy dispersive X-ray (EDX) and thermal gravimetry-differential thermal analysis (TG-DTA), and found to be between 79.2% and 93.0%. Additionally, struvite-containing piggery wastewater and sawdust were mixed in a weight ratio of 2.5:1 and processed into a mature compost. The newly manufactured compost passed all quality standards required for first-class graded livestock composts. Moreover, this compost was sprayed directly onto the soil at the test site, and various parameters of the soil's effluent, such as total organic carbon (TOC), total nitrogen (T-N), total phosphorus (T-P), and dissolved oxygen (DO), were analyzed and measured. Based on these results, it is determined that the newly manufactured compost can more significantly reduce water pollution than commercial compost.

Determination of Flunixin and 5-Hydroxy Flunixin Residues in Livestock and Fishery Products Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)

  • Dahae Park;Yong Seok Choi;Ji-Young Kim;Jang-Duck Choi;Gui-Im Moon
    • Food Science of Animal Resources
    • /
    • v.44 no.4
    • /
    • pp.873-884
    • /
    • 2024
  • Flunixin is a veterinary nonsteroidal anti-inflammatory agent whose residues have been investigated in their original form within tissues such as muscle and liver. However, flunixin remains in milk as a metabolite, and 5-hydroxy flunixin has been used as the primary marker for its surveillance. This study aimed to develop a quantitative method for detecting flunixin and 5-hydroxy flunixin in milk and to strengthen the monitoring system by applying to other livestock and fishery products. Two different methods were compared, and the target compounds were extracted from milk using an organic solvent, purified with C18, concentrated, and reconstituted using a methanol-based solvent. Following filtering, the final sample was analyzed using liquid chromatography-tandem mass spectrometry. Method 1 is environmentally friendly due to the low use of reagents and is based on a multi-residue, multi-class analysis method approved by the Ministry of Food and Drug Safety. The accuracy and precision of both methods were 84.6%-115% and 0.7%-9.3%, respectively. Owing to the low matrix effect in milk and its convenience, Method 1 was evaluated for other matrices (beef, chicken, egg, flatfish, and shrimp) and its recovery and coefficient of variation are sufficient according to the Codex criteria (CAC/GL 71-2009). The limits of detection and quantification were 2-8 and 5-27 ㎍/kg for flunixin and 2-10 and 6-33 ㎍/kg for 5-hydroxy flunixin, respectively. This study can be used as a monitoring method for a positive list system that regulates veterinary drug residues for all livestock and fisheries products.

Fractional Recovery as Extractable Form of Nutrient in Composted Livestock Manure Application on Soil Distributed in jeju (제주 토양에서 시용한 가축분 중 양분의 유효화율)

  • Hwang, Ki-Sung;Lee, In-Bog;Park, Jin-Myean;Yoo, Bong-Sick
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.1
    • /
    • pp.49-54
    • /
    • 2007
  • This study was conducted to determine effects of composted livestock manure application on soil nutrient change. PVC pot $(30\times100cm)$ was filled with either volcanic ash soil (Gujwa series) or non-volcanic ash soil (Aewol series) and the 20 cm surface soils were applied with composted livestock manures of cattle pig and poultry at the rates of 0, 50, 100 and 150 ton/ha, respectively. After 210 days soils samples of phosphate, potassium, calcium, and magnesium affected by application of the compost. The applied composted were equivalent to the application of organic matter of $23\sim111$ ton/ha and nitrogen of $80\sim450$ ton/ha. Availability rate of phosphate after the application of composted livestock manures ranged from 1.6 to 91.7% according to the different composted. It was much higher in the non-volcanic ash soil than in the volcanic ash soil. Availability rate of potassium fractional recovery rate change ranged from 22 to 94% according to the different manures. It was larger in the composted Availability rate of calcium 38 to 93% and $9\sim90%$ in volcanic ash soil and non-volcanic ash soil, respectively, It was higher in the composted manures followed by cattle and composted pig manures. Availability rate magnesium ranged from 12 to 41% and $1\sim9%$ in volcanic ash soil and non-volcanic ash soil, respectively. The rate was higher in the composted poultry manure followed by pig and composted cattle manures.

Effects of Maturity at Harvest and Wilting Days on Quality of Round Baled Rye Silage

  • Kim, J.G.;Chung, E.S.;Seo, S.;Ham, J.S.;Kang, W.S.;Kim, D.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.9
    • /
    • pp.1233-1237
    • /
    • 2001
  • A study was conducted to determine the effects of maturity at harvest and wilting days on the quality of round baled rye (Secale cereale L.) silage. This study was a $3{\times}3$ factorial arrangement in a split plot design with 3 replicates. The main plot was 3 harvesting dates at the stage of boot (20 Apr.), heading (29 Apr.) and flowering (14 May). The subplot was wilting day : 0 (unwilted), 0.5 and 1 day (0, 1, and 2 days at boot stage). Acid detergent fiber (ADF) and neutral detergent fiber (NDF) contents of rye silage were significantly greater than those of rye before ensiling, but crude protein (CP) content and in vitro dry matter digestibility (IVDMD) were vice versa. Buffering capacity (BC) of rye harvested at flowering stage was decreased from 264 to 202 meq/kg at 1 day wilting, however, it was increased when harvested at boot or heading stage. The pH in wilted silage was the highest while that of flowering stage was the lowest. Water soluble carbohydrate (WSC) content of wilting rye was lower than that of unwilted, and the lowest at late harvesting stage. All plots had minimal WSC content for silage fermentation. Wilting treatment and delayed harvesting date caused an increase in dry matter (DM) content of round bale silage. The content of ammonia-N expressed as a portion of total N showed negative correlation with DM content. High quality silage according to ammonia-N content could be obtained from mid-harvest with wilting. There were highly significant differences in each organic acid between harvesting dates and wilting periods. Acetic and butyric acid contents were increased with delayed harvesting and prolonged wilting period, the lactic acid content, however, was decreased. This study demonstrated that harvest of rye from heading to flowering stage with wilting would be a recommendable method for making high quality rye silage using round bale system.

A study on the estimation of TMDL run-off pathway coefficients for livestock resources (축분자원화물의 총량관리지침 배출구조계수 산정에 관한 연구)

  • Han, Gee-Bong;Lee, Young-Sin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.3
    • /
    • pp.99-107
    • /
    • 2013
  • In this study, field scale test was conducted to estimate the TMDL coefficients (runoff and leachate:(${\beta}4$)(${\beta}5$)(${\beta}8$)) for the livestock resources applying to agricultural crop land as fertilizer, and the results were obtained as follows. Each waste reduction coefficient(${\beta}4$) was shown to be in the range of 0.94~0.75 for public waste treatment plants and 0.99~0.83 for private waste treatment in the analysis of BOD, COD, SS, T-N, T-P, TOC. Thus private plants showed higher rate. Waste treatment discharge into the land coefficient (${\beta}5$) was also shown to be in the range of 0.4.~0.24 for public plants and 0.75~0.16 for private plants, so it is much lower than other coefficients. However SS and T-P were shown to be much higher for land discharge in private plants than in public plants. Treatment coefficient in the public plants (${\beta}8$) appeared to be average 0.75 for T-P but over 90% treatment efficiency and also large deviation were observed due to 0.2 of some other treatment plants.

Anaerobic Biological Treatment of Abandoned Metallic Mine Drainages with Limestone and Recycling of Papermill and Livestock Sludge (석회석과 제지·축산슬러지를 재활용한 폐금속광산폐수의 혐기성 처리)

  • Kim, Eun-Ho;Kim, Hyeong-Seok;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.463-473
    • /
    • 2000
  • This research was carried out to investigate chemical pretreatment using limestone in treating abandoned metallic mine drainage with anaerobic biological treatment, and to estimate application of papermill and livestock sludge as carbon sources for SRB (Sulfate Reducing Bacterial. Capacity of anaerobic limestone bed was steeply decreased. But if limestone was utilized as pretreatment process in treating them with anaerobic biological treatment. it could look forward to stabilize system because it did initally neutralize them. Effluent SCOD in R-4 was lower than R-l~R-3 in inital HRT 5day but its concentration was high in HRT 1day after passed time. Therefore in point of durability and supply of organic matter. it seemed that R-4 was useful became organic matter in R-4 was not consumed by excessive degradation within short period. In all reactors, pH was suitable for SRB growth in whole HRT, but on the evidence of ORP, SRB was active after HRT 2day. Fixation trend of heavy meta s showed high as $SO_4{^{2-}}$ reduction efficiency increased, and $SO_4{^{2-}}$ reduction and fixation of heavy metals were relatively high in HET 2day.

  • PDF

Maturity Evaluation and Determination of Aeration Time Using Germination Index of Co-Digestates (발아지수를 이용한 혼합 혐기소화액의 부숙도 평가 및 폭기기간 설정)

  • Byeon, Ji-Eun;Lee, Hong-Ju;Hwang, Sun-Goo;Rhim, Tae-Jin;Ryoo, Jong-Won
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.2
    • /
    • pp.5-13
    • /
    • 2020
  • This study was conducted to evaluate the effect of optimal aeration time of livestock manure slurry with fruits pomace on germination index. Six co-digestates of livestock manure slurry with fruits was aerated with 0.1 ㎥ air/㎥·min for 54 days. The maturity of digestates was evaluated using the germination method. The germination index(GI) of co-digestate of SS + CS + MP was more than 70 at the 30th day of aeration. The GI of co-digestate of SS + CS was more than 70 at the 36th day of aeration. The GI of digestate of swine manure slurry alone was 70 at the 54th day of aeration. The co-digestate of SS + MP caused to shorten 24 days of aeration period to reach GI of 70, compared to swine manure digestate. These results suggest that the germination index of seed could be used to establish the optimal aeration time for co-digestate of liquid fertilizer.

Effect of Aeration Mechanism on Livestock Manure Liquid Fertilization (폭기형태가 돈분뇨 액비 부숙특성에 미치는 영향)

  • Jeong, Kwang-Hwa;Khan, Modabber Ahmed;Kim, Chang-Hyun;Lee, Dong-Hyun;Choi, Dong-Yoon;Yu, Yong-Hee
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.4
    • /
    • pp.703-713
    • /
    • 2012
  • Three types of aeration system were installed in experimental liquid fertilization tanks to investigate the change of characteristics of pig slurry used as a raw material for making livestock liquid fertilizer. The aeration systems of the reaction tanks were composed of three major part: the air suppling part (blower), the air pipe part, and the air diffuser part. In the first tank (reactor A), the air was supplied from the bottom of the reaction tank through air pipe system connecting air diffuser with commercial ordinary blower. In the second tank (reactor B), the air diffuser was located 10cm above the bottom of the reactor. In the third tank (reactor C), the pure air was supplied with circulating pjg slurry. The oxygen content of pure air was about 90%. The pure air was mixed with pig slurry by mechanically in the air suppling part (blower) and the air pipe part. The agitation effect was highest in the reactor C than other reactors. The contents of SS, COD, T-N and T-P of each samples collected at middle part of all reactors were 8,500, 4,188, 694 and 422mg/L; 9,000, 4,247, 813 and 356mg/L; 8,667, 6,910, 973 and 269mg/L, respectively.

Reducing Greenhouse Gas Emissions in Ruminants : Minireview (반추동물에서 발생하는 온실가스의 저감방안 : 총설)

  • Kim, Eun-Joong
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.2
    • /
    • pp.185-200
    • /
    • 2012
  • It has been reported that world population continues to increase so that a matter of food security can be a world-wide problem for mankind. An anticipated rise in world population of 30% and the subsequent increased demand for food brings with it challenges in terms of global resource usage and food security. However, ruminant livestock production and consumption make a large contribution to the greenhouse gas (GHG) emissions which can be attributable to food production. Given the association between GHG and climate change, this is clearly of great concern to the livestock industry worldwide. Nevertheless, ruminant livestock also play an important role in global food security as they can convert the plant cell wall materials and non-protein nitrogen compounds, found widely in plants but indigestible to all monogastric animals including man, into high value proteins for human consumption. Much effort has been made to maximize animal production, feed conversion ratio, and to improve animal breeding in ruminant agriculture. In addition improving feed formulation techniques, developing chemical additives, plant extracts, and new plant varieties for grazing have been tested. Future ruminant production systems will need to capitalize on important benefits of ruminants. It is therefore suggested that ruminant agriculture has a key role to play in maintaining and enhancing provision of quality proteins and essential nutrients for human being but the challenge of reducing GHG emissions, and methane in particular, needs to be successfully addressed.

Effect of food waste properties on methane production (음식물쓰레기의 특성이 메탄생성량에 미치는 영향분석)

  • Lee, Soo Gwan;Choi, Hong Lim;Lee, Joon Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.3
    • /
    • pp.11-22
    • /
    • 2014
  • The buffer capacity of food waste lowers during the collecting and transportation period. Food waste usually shows deficiency of micro nutrients especially molybdenum(Mo) and cobalt(Co). Therefore, food waste can be considered as a good mixture of livestock waste to enhance methane production. The objective of this study was to investigate the correlation between properties of substrates (local food waste and livestock manure) and methane yields for successive anaerobic fermentation process and its stable management. Food wastes were taken at an intermediate storage or treatment system provided by eight local authorities (Gangnam, Gangdong, Gwanak, Guro, Dongjak, Songpa, Yeongdeungpo, and Younsan) in Seoul. The solid content and potential methane yield of food wastes were average of 16% and $446.6STP-m{\ell}/g-VS$ (range from 334.8 to $567.5STP-m{\ell}/g-VS$) respectively. As for the beef cattle manure, the solid content and potential methane yield had an average of 26% and $280.6STP-m{\ell}/g-VS$ respectively. Potential methane yield had a positive correlation with fat content, and hydrogen content and a negative correlation with carbohydrate content ($r^2>0.8$). Therefore, the potential methane yield can be predicted based on the substrate characterization results with reasonable accuracy. Further research may be needed to investigate the relation of the properties of the mixture substrate and methane production rate. The mixtures may include food waste, livestock waste, and bulking agents (saw dust, rice hull, or agricultural byproducts etc.) to determine best combination of these substrates for maximum methane production rate.