• Title/Summary/Keyword: Organic light-emitting diode

Search Result 437, Processing Time 0.029 seconds

High efficiency deep blue phosphorescent organic light emitting diodes using a phenylcarbazole type phosphine oxide as a host material

  • Jeon, Soon-Ok;Yook, Kyoung-Soo;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.188-191
    • /
    • 2009
  • A high efficiency deep blue phosphorescent organic light-emitting diode (PHOLED) was developed using a new wide triplet bandgap host material (PPO1) with a phenylcarbazole and a phosphine oxide unit. The wide triplet bandgap host material was synthesized by a phosphornation reaction of 2-bromo-Nphenylcarbazole with chlorodiphenylphosphine. A deep blue emitting phosphorescent dopant, tris((3,5-difluoro-4-cyanophenyl)pyridine)iridium (FCNIr), was doped into the PPO1 host and a high quantum efficiency of 17.1 % and a current efficiency of 19.5 cd/A with a color coordinate of (0.14,0.15) were achieved in the blue PHOLED. The quantum efficiency of the deep blue PHOLED was better than any other quantum efficiency value reported up to now.

  • PDF

Fabrication and characteristic evaluation of microfluidics chip integrated OLED for the light sources (OLED광원이 집적화된 마이크로 플루이딕칩의 제작 및 특성 평가)

  • Kim, Young-Hwan;Han, Jin-Woo;Kim, Jong-Yeon;Kim, Byoung-Yong;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.377-377
    • /
    • 2007
  • A simplified integration process including packaging is presented, which enables the realization of the portable fluorescence detection system. A fluorescence detection microchip system consisting of an integrated PIN photodiode, an organic light emitting diode (OLED) as the light source, an interference filter, and a microchannel was developed. The on-chip fluorescence detector fabricated by poly(dimethylsiloxane) (PDMS)-based packaging had thin-film structure. A silicon-based integrated PIN photo diode combined with an optical filter removed the background noise, which was produced by an excitation source, on the same substrate. The active area of the finger-type PIN photo diode was extended to obtain a higher detection sensitivity of fluorescence. The sensitivity and the limit of detection (LOD S/N = 3) of the system were $0.198\;nA/{\mu}M$ and $10\;{\mu}M$, respectively.

  • PDF

RGB White Organic Light Emitting Diode with a Color Control Layer

  • Lee, Jeong-Ik;Chu, Hye-Yong;Yang, Yong-Suk;Lee, Mi-Do;Chung, Sung-Mook;KoPark, Sang-Hee;Hwang, Chi-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1587-1590
    • /
    • 2006
  • Through the engineering of recombination region and energy transfer in organic light emitting device, blue and red light emitting device with good color stability has been successfully obtained. A Color control layer (CCL), which emits green light through the energy transfer from the emission layers, has been introduced into the blue and red light emitting device for RGB white OLED. The RGB white OLED showed the current efficiency of 13 cd/A and the CIE coordinates of (0.33, 0.38) at $1000\;cd/m^2$. The device exhibited very stable spectrum with respect to operating current density and the CIE coordinates varied from (0.34, 0.38) to (0.31, 0.37) for $100-22000\;cd/m^2$.

  • PDF

Electroluminescent Properties of BECCP/Alq3 Organic Light-emitting Diode (BECCP/Alq3 이중층을 이용한 전기 발광 소자의 특성 연구)

  • Lee, Ho-Sik;Yang, Ki-Sung;Shin, Hoon-Kyu;Park, Jong-Wook;Kim, Tae-Wan;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1050-1053
    • /
    • 2004
  • Many organic materials have been synthesized and extended efforts have been made to obtain high performance electroluminescence(EL) devices, since the first report of the light-emitting diodes based on Alq3. BECCP[bis(3-N-ethylcarbazolyl)cyanoterephthalidene] is a new luminescent material having cyano as an electron acceptor part and carbazole moiety as an electron donor part. The BECCP material shows blue PL and EL spectra of the device at about 480nm and in the ITO/BECCP/Al device shows typical rectifying diode characteristics. We have introduced Alq3 between the electrode and BECCP, and obtained more intensive rectifying diode characteristics in forward and reverse bias.

  • PDF

Antireflective Film Design to Improve the Optical Efficiency of Organic Light-emitting Diode Displays (유기발광다이오드 디스플레이의 광효율 향상을 위한 반사방지필름 설계)

  • Kim, Kiman;Lim, Young Jin;Doan, Le Van;Lee, Gi-Dong;Lee, Seung Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.6
    • /
    • pp.262-267
    • /
    • 2018
  • In this paper, we designed a new antireflective film to improve the optical efficiency of organic light-emitting diode displays (OLEDs). The reflection characteristics in the normal and side viewing directions of OLEDs with the antireflective film were calculated, depending on the degree of polarization and transmittance of the currently used polarizer when used in the antireflective film of an OLED. The results showed that when the polarization degree of the commercial polarizer (99.990~99.995%) is lowered to 99.900%, the average reflectance of the antireflective film is increased by about 0.1% (2.5% in terms of rate of increase) which is difficult to notice with the human eye, while the transmittance is increased by 1.63~3.34% (4.2~8.2% in terms of rate of increase). This study provides an optimal design for high-light-efficiency OLEDs with good antireflection properties.

A Multifunctional Material Based on Triphenylamine and a Naphthyl Unit for Organic Light-Emitting Diodes, Organic Solar Cells, and Organic Thin-Film Transistors

  • Kwon, Jongchul;Kim, Myoung Ki;Hong, Jung-Pyo;Lee, Woochul;Lee, Seonghoon;Hong, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1355-1360
    • /
    • 2013
  • We have developed a new multifunctional material, 4,4',4"-tris(4-naphthalen-2-yl-phenyl)amine (2-TNPA), which can be used as a blue-emitting and hole-transporting material in organic light-emitting diodes (OLEDs), as well as a donor material in organic solar cells (OSCs) and an active material in organic thin-film transistors (OTFTs). The OLED device doped with 3% 2-TNPA shows a maximum current efficiency of 3.0 $cdA^{-1}$ and an external quantum efficiency of 3.0%. 2-TNPA is a more efficient hole-transporting material than 4,4'-bis[N-(naphthyl-N-phenylamino)]biphenyl (NPD). Furthermore, 2-TNPA shows a power-conversion efficiency of 0.39% in OSC and a field-effect mobility of $3.2{\times}10^{-4}cm^2V^{-1}s^{-1}$ in OTFTs.

Properties of Organic Light Emitting Diode with ITO/MEH-PPV/Al Structure on Heating Temperatures (열처리 온도에 따른 ITO/MEH-PPV/Al 구조의 유기 발광다이오드의 특성연구)

  • 조중연;장호정
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.4
    • /
    • pp.35-38
    • /
    • 2003
  • Polymer light emitting diode (PLED) with an ITO/MEH-PPV/Al structure were prepared by spin coating method on the ITO (indium tin oxide)/glass substrates, using poly(2-methoxy-5-(2-ethylhexoxy)-1,4-phenylenevinylene (MEH-PPV) as the light emitting material. The dependence of heat treatment on the electrical and optical properties for the prepared PLED samples were investigated. The luminance decreased greatly from 630 cd/$\m^2$ to 280 cd/$\m^2$ at 10V input voltage as the heating temperature increased from $65^{\circ}C$ to $170^{\circ}C$. In addition, the luminance efficiency was found to be about 2 lm/W for the sample heat treated at $65^{\circ}C$. These results may be related to the interface roughness and/or the formation of an insulation layer, which is caused by the reaction between electrode and MEH-PPV organic luminescent film layer.

  • PDF

Evaluation of Performance and Reliability of a White Organic Light-Emitting Diode(WOLED) Using an Accelerated Life Test(ALT) (가속수명시험(ALT)을 이용한 WOLED의 성능 및 신뢰성 평가)

  • Moon, Jin-Chel;Park, Hyung-Ki;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.13-19
    • /
    • 2012
  • The purpose of this study is to extract the major factors related to the deterioration mechanism of white organic light-emitting diodes(WOLED) by performing accelerated testing of temperature, voltage, time, etc., and to develop an accelerated life test(ALT) model. The measurement results of the brightness of the WOLED exhibited that their average brightness tended to increase as the operating voltage increased and that the half-life period of the brightness appeared after approximately 400 hours when the operating voltage was 20V and the ambient temperature was $85^{\circ}C$. It could be seen that although the WOLED showed comparatively the same brightness when the initial acceleration began after the operating voltage was applied to it, its brightness changed excessively after the WOLED's thermal storage had been made. In addition, it was observed that the half-life period was reduced as the ambient temperature and applied voltage increased. The strength of the WOLED which had been maintained in the range of visible light at the maximum load was reduced by the deterioration of the organic light emitting material due to the influence of the operating voltage and temperature, and the reduction of emitted light was small at low voltage and temperature. It could be seen that the failure of the WOLED during the ALT was caused by wear due to load accumulation over time, and that Weibull distribution was appropriate for the life distribution and acceleration was established between test conditions. From the WOLED analysis, it is thought that factors influencing the brightness deterioration are voltage, temperature, etc., and that comprehensive analysis considering discharge control, dielectric tangent margin, etc., would further increase the reliability.