• 제목/요약/키워드: Organic light-emitting diode

검색결과 436건 처리시간 0.037초

High efficiency deep blue phosphorescent organic light emitting diodes using a phenylcarbazole type phosphine oxide as a host material

  • Jeon, Soon-Ok;Yook, Kyoung-Soo;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.188-191
    • /
    • 2009
  • A high efficiency deep blue phosphorescent organic light-emitting diode (PHOLED) was developed using a new wide triplet bandgap host material (PPO1) with a phenylcarbazole and a phosphine oxide unit. The wide triplet bandgap host material was synthesized by a phosphornation reaction of 2-bromo-Nphenylcarbazole with chlorodiphenylphosphine. A deep blue emitting phosphorescent dopant, tris((3,5-difluoro-4-cyanophenyl)pyridine)iridium (FCNIr), was doped into the PPO1 host and a high quantum efficiency of 17.1 % and a current efficiency of 19.5 cd/A with a color coordinate of (0.14,0.15) were achieved in the blue PHOLED. The quantum efficiency of the deep blue PHOLED was better than any other quantum efficiency value reported up to now.

  • PDF

OLED광원이 집적화된 마이크로 플루이딕칩의 제작 및 특성 평가 (Fabrication and characteristic evaluation of microfluidics chip integrated OLED for the light sources)

  • 김영환;한진우;김종연;김병용;서대식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.377-377
    • /
    • 2007
  • A simplified integration process including packaging is presented, which enables the realization of the portable fluorescence detection system. A fluorescence detection microchip system consisting of an integrated PIN photodiode, an organic light emitting diode (OLED) as the light source, an interference filter, and a microchannel was developed. The on-chip fluorescence detector fabricated by poly(dimethylsiloxane) (PDMS)-based packaging had thin-film structure. A silicon-based integrated PIN photo diode combined with an optical filter removed the background noise, which was produced by an excitation source, on the same substrate. The active area of the finger-type PIN photo diode was extended to obtain a higher detection sensitivity of fluorescence. The sensitivity and the limit of detection (LOD S/N = 3) of the system were $0.198\;nA/{\mu}M$ and $10\;{\mu}M$, respectively.

  • PDF

RGB White Organic Light Emitting Diode with a Color Control Layer

  • Lee, Jeong-Ik;Chu, Hye-Yong;Yang, Yong-Suk;Lee, Mi-Do;Chung, Sung-Mook;KoPark, Sang-Hee;Hwang, Chi-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1587-1590
    • /
    • 2006
  • Through the engineering of recombination region and energy transfer in organic light emitting device, blue and red light emitting device with good color stability has been successfully obtained. A Color control layer (CCL), which emits green light through the energy transfer from the emission layers, has been introduced into the blue and red light emitting device for RGB white OLED. The RGB white OLED showed the current efficiency of 13 cd/A and the CIE coordinates of (0.33, 0.38) at $1000\;cd/m^2$. The device exhibited very stable spectrum with respect to operating current density and the CIE coordinates varied from (0.34, 0.38) to (0.31, 0.37) for $100-22000\;cd/m^2$.

  • PDF

BECCP/Alq3 이중층을 이용한 전기 발광 소자의 특성 연구 (Electroluminescent Properties of BECCP/Alq3 Organic Light-emitting Diode)

  • 이호식;양기성;신훈규;박종욱;김태완;권영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1050-1053
    • /
    • 2004
  • Many organic materials have been synthesized and extended efforts have been made to obtain high performance electroluminescence(EL) devices, since the first report of the light-emitting diodes based on Alq3. BECCP[bis(3-N-ethylcarbazolyl)cyanoterephthalidene] is a new luminescent material having cyano as an electron acceptor part and carbazole moiety as an electron donor part. The BECCP material shows blue PL and EL spectra of the device at about 480nm and in the ITO/BECCP/Al device shows typical rectifying diode characteristics. We have introduced Alq3 between the electrode and BECCP, and obtained more intensive rectifying diode characteristics in forward and reverse bias.

  • PDF

유기발광다이오드 디스플레이의 광효율 향상을 위한 반사방지필름 설계 (Antireflective Film Design to Improve the Optical Efficiency of Organic Light-emitting Diode Displays)

  • 김기만;임영진;레 반 도안;이기동;이승희
    • 한국광학회지
    • /
    • 제29권6호
    • /
    • pp.262-267
    • /
    • 2018
  • 본 논문에서는 유기발광다이오드 디스플레이(OLED)의 광 효율을 향상시키기 위해 방사방지필름을 새롭게 디자인하였다. 현재 상용화되고 있는 편광판의 편광도와 투과율을 변화시켜 OLED 반사방지필름에 사용하였을 경우 정면과 측면방향의 반사특성을 계산하였다. 그 결과 편광도가 99.995%나 99.990%인 상용화된 편광판의 편광도를 99.9% 수준으로 떨어뜨릴 경우, 반사방지필름의 평균 시감반사율은 사람의 눈으로 알아차리기 힘든 약 0.1% (증가율 환산 2.5%) 상승한 반면, 투과율은 기존보다 약 1.63~3.34%(증가율 환산 4.2~8.2%) 상승하였다. 이 결과는 기존 OLED에서 저반사율을 유지하면서 광효율을 상승시킬 수 있는 광학설계 조건을 제시하였다.

A Multifunctional Material Based on Triphenylamine and a Naphthyl Unit for Organic Light-Emitting Diodes, Organic Solar Cells, and Organic Thin-Film Transistors

  • Kwon, Jongchul;Kim, Myoung Ki;Hong, Jung-Pyo;Lee, Woochul;Lee, Seonghoon;Hong, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권5호
    • /
    • pp.1355-1360
    • /
    • 2013
  • We have developed a new multifunctional material, 4,4',4"-tris(4-naphthalen-2-yl-phenyl)amine (2-TNPA), which can be used as a blue-emitting and hole-transporting material in organic light-emitting diodes (OLEDs), as well as a donor material in organic solar cells (OSCs) and an active material in organic thin-film transistors (OTFTs). The OLED device doped with 3% 2-TNPA shows a maximum current efficiency of 3.0 $cdA^{-1}$ and an external quantum efficiency of 3.0%. 2-TNPA is a more efficient hole-transporting material than 4,4'-bis[N-(naphthyl-N-phenylamino)]biphenyl (NPD). Furthermore, 2-TNPA shows a power-conversion efficiency of 0.39% in OSC and a field-effect mobility of $3.2{\times}10^{-4}cm^2V^{-1}s^{-1}$ in OTFTs.

열처리 온도에 따른 ITO/MEH-PPV/Al 구조의 유기 발광다이오드의 특성연구 (Properties of Organic Light Emitting Diode with ITO/MEH-PPV/Al Structure on Heating Temperatures)

  • 조중연;장호정
    • 마이크로전자및패키징학회지
    • /
    • 제10권4호
    • /
    • pp.35-38
    • /
    • 2003
  • ITO/glass 기판 위에 발광물질로서 poly(2-methoxy-5-(2-ethylhexoxy)-1,4-phenylenevinylene (MEH-PPV)를 이용하여 스핀코팅법(spin coating)으로 Glass/ITOM/MEH-PPV/Al 구조를 가지는 고분자 유기 발광 다이오드를 제작하였다. MEH-PPV 박막형성시 열처리온도에 따른 다이오드의 전기적, 광학적 특성을 조사하였다. 열처리 온도를 $65^{\circ}C$에서 $170^{\circ}C$로 증가함에 따라 유기 발광다이오드의 발광휘도는 10V 인가전압에서 630 cd/$\m^2$에서 280 cd/$\m^2$로 크게 감소하였다. 또한 $65^{\circ}C$에서 열처리한 시료의 경우 약 2 lm/W의 최대 발광효율을 나타내었다. 이러한 결과는 높은 온도에서 열처리시 MEH-PPV 유기 형광층과 전극간의 상호반응에 의한 계면 거칠기의 증가와 새로운 절연층의 형성 등과 관련이 있는것으로 판단된다.

  • PDF

가속수명시험(ALT)을 이용한 WOLED의 성능 및 신뢰성 평가 (Evaluation of Performance and Reliability of a White Organic Light-Emitting Diode(WOLED) Using an Accelerated Life Test(ALT))

  • 문진철;박형기;최충석
    • 한국안전학회지
    • /
    • 제27권4호
    • /
    • pp.13-19
    • /
    • 2012
  • The purpose of this study is to extract the major factors related to the deterioration mechanism of white organic light-emitting diodes(WOLED) by performing accelerated testing of temperature, voltage, time, etc., and to develop an accelerated life test(ALT) model. The measurement results of the brightness of the WOLED exhibited that their average brightness tended to increase as the operating voltage increased and that the half-life period of the brightness appeared after approximately 400 hours when the operating voltage was 20V and the ambient temperature was $85^{\circ}C$. It could be seen that although the WOLED showed comparatively the same brightness when the initial acceleration began after the operating voltage was applied to it, its brightness changed excessively after the WOLED's thermal storage had been made. In addition, it was observed that the half-life period was reduced as the ambient temperature and applied voltage increased. The strength of the WOLED which had been maintained in the range of visible light at the maximum load was reduced by the deterioration of the organic light emitting material due to the influence of the operating voltage and temperature, and the reduction of emitted light was small at low voltage and temperature. It could be seen that the failure of the WOLED during the ALT was caused by wear due to load accumulation over time, and that Weibull distribution was appropriate for the life distribution and acceleration was established between test conditions. From the WOLED analysis, it is thought that factors influencing the brightness deterioration are voltage, temperature, etc., and that comprehensive analysis considering discharge control, dielectric tangent margin, etc., would further increase the reliability.