• 제목/요약/키워드: Organic light emitting device

검색결과 598건 처리시간 0.032초

고효율 $CBP:Ir(ppy)_3$-PhOLEDs의 제작과 특성 연구 (Fabrication and Characterization of High Efficiency CBP:Ir(ppy)_3$-PhOLEDs)

  • 장지근;신상배;신현관;안종명;장호정;유상욱
    • 마이크로전자및패키징학회지
    • /
    • 제15권2호
    • /
    • pp.1-6
    • /
    • 2008
  • 고효율 녹색 인광 유기발광다이오드를 개발하기 위해 소자 구조를 ITO/2-TNATA/NPB/TCTA/CBP:$7%Ir(ppy)_3$/BCP/SFC-137/LiF/Al로 설계 제작하고 그 전계발광 특성을 평가하였다. 소자 제작에서 발광 호스트의 두께를 $150{\AA}{\sim}350{\AA}$ 범위로 변화시켜, 전계발광 특성을 비교해 본 결과, CBP두께가 약 $300{\AA}$ 부근일 때 가장 우수한 휘도 특성이 얻어졌다 전류 효율은 CBP두께가 $300{\AA}{\sim}350{\AA}$범위일 때 거의 포화되어 최대로 나타났다. $CBP(300{\AA}):7%Ir(ppy)_3-EML$ 층을 갖는 PhOLED(phosphorescent organic light emitting diode)의 전류 밀도, 휘도, 그리고 전류 효율은 10V의 인가전압에서 각각 $40mA/cm^2,\;10000cd/m^2$, 25cd/A로 나타났다. 또한 이 소자의 최대 전류효율은 $160cd/m^2$의 휘도 상태에서 40.5cd/A로 나타났다. 발광 스펙트럼은 512nm의 중심 파장과 약 60nm의 FWHM(Full Width Half Maximum)을 나타내었으며, CIE (Commission Internationale de I'Eclairage)도표 상에서 색 좌표는 (0.28,0.63)으로 나타났다.

  • PDF

고분자 정공수송층에 용액 공정 도핑법을 적용한 인광 유기전기발광소자 (Solution processed doping to the polymer hole transporting layer for phosphorescent organic light-emitting diodes)

  • 성백상;이장원;이승훈;유재민;이재현;이종희
    • 전기전자학회논문지
    • /
    • 제24권3호
    • /
    • pp.699-705
    • /
    • 2020
  • 본 연구에서는 유기전기발광소자의 전기적 특성을 향상시키기 위한 방법으로, 용액공정 도핑법이 도입된 고분자 poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4′-(N-(4-sec-butylphenyl)diphenylamine)] (TFB)기반의 정공수송층을 제안하였다. 정공수송층 소재 TFB 용액 내에 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN)를 3 wt% 도핑을 하여 정공수송층의 전기적 특성을 향상 시켰다. 이를 통해 HAT-CN이 도핑된 TFB을 이용한 유기전기발광소자에서는 향상된 정공수송층의 전도도를 통해 동일 구동 전압 시 전류 밀도와 휘도가 증가하였고, 점등 개시 전압이 13V에서 9V로 줄어드는 것을 확인하였다. 또한, 도핑법이 적용되지 않은 기준 소자 대비 최대 외부양자효율이 3.6%에서 10.8%로 약 3배 향상 되는 것을 확인하였다.

경과 시간에 따른 청색 형광 OLED의 Impedance 특성 (Impedance Characteristics of Blue Fluorescent OLED According to Elapsed Time)

  • 공도훈;양재웅;주성후
    • 한국표면공학회지
    • /
    • 제50권5호
    • /
    • pp.405-410
    • /
    • 2017
  • In order to study current-voltage-luminance and impedance characteristics according to elapsed time, a blue fluorescent OLED was fabricated. The current density and luminance gradually decreased in accordance with elapsed time and did not emit light after 480 hours, and the threshold voltage increased as time elapsed. The Cole-Cole plot was a semicircular shape of a very large size at 2 V of the applied voltage below the threshold voltage, and the maximum value of the real number impedance did not change greatly from 9314.5 to $9902.2{\Omega}$ as time elapsed. Applied voltages 4, 6, and 8 V above the threshold voltage showed a large change in the real number impedance value at the semicircle end to 9,678.2, 9,826, $9,535.4{\Omega}$ according to the elapsed time from 2,222.5, 183.7, $48.2{\Omega}$ immediately after fabricating the device. By increasing the applied voltage beyond the threshold voltage just after device fabrication, the energy difference between the device and the organic layer was overcome and the current flowed, the maximum value of the real number impedance sharply decreased. As time passed, current did not flow through the element even at high applied voltage due to degradation of the element, and even when the applied voltage was higher than the threshold voltage, it showed an impedance value such as applied voltage equal to or less than the threshold voltage. As a result, it can be learned that the change in the impedance with elapsed time reflects the characteristics due to the degradation of the OLED and can predict the characteristics and lifetime of the OLED.

Synthesis and Characterization of New Blue Light Emitting Alternating Terphenylenevinylene Carbazylenevinylene Copolymer

  • Kim Yun-Hi;Park Jung-Cheol;Kang Hun-Jin;Park Jong-Won;Kim Hyung-Sun;Kim Jin-Hak;Kwon Soon-Ki
    • Macromolecular Research
    • /
    • 제13권5호
    • /
    • pp.403-408
    • /
    • 2005
  • A new terphenylenevinylene carbazylenevinylene alternating copolymer with the advantage of poly(p-phenylenevinylene) (PPV), poly(p-phenylene )(PPP) and poly(carbazole) was designed, synthesized and characterized. The polymer structure was confirmed by various spectroscopic analyses and the number average molecular weight ($M_n$) of the obtained polymer was 7,800. The resulting polymer was thermally stable with high glass transition temperature ($T_g$) ($150^{\circ}C$), and was readily soluble in common organic solvents. Cyclic voltammetry study revealed that the HOMO and LUMO energy levels of the polymer were 5.37 and 2.47 eV, respectively. The ITO/PEDOT/polymer/AI device fabricated from the polymer emitted bright sky blue light with a maximum peak of around 478 nm. The device showed the maximum brightness of 1,200 nW with a turn-on voltage of 7V.

Surface Control of Planarization Layer on Embossed Glass for Light Extraction in OLEDs

  • Cho, Doo-Hee;Shin, Jin-Wook;Moon, Jaehyun;Park, Seung Koo;Joo, Chul Woong;Cho, Nam Sung;Huh, Jin Woo;Han, Jun-Han;Lee, Jonghee;Chu, Hye Yong;Lee, Jeong-Ik
    • ETRI Journal
    • /
    • 제36권5호
    • /
    • pp.847-855
    • /
    • 2014
  • We developed a highly refractive index planarization layer showing a very smooth surface for organic light-emitting diode (OLED) light extraction, and we successfully prepared a highly efficient white OLED device with an embossed nano-structure and highly refractive index planarization layers. White OLEDs act as an internal out-coupling layer. We used a spin-coating method and two types of $TiO_2$ solutions for a planarization of the embossed nano-structure on a glass substrate. The first $TiO_2$ solution was $TiO_2$ sol, which consists of $TiO_2$ colloidal particles in an acidic aqueous solution and several organic additives. The second solution was an organic and inorganic hybrid solution of $TiO_2$. The surface roughness ($R_a$) and refractive index of the $TiO_2$ planarization films on a flat glass were 0.4 nm and 2.0 at 550 nm, respectively. The J-V characteristics of the OLED including the embossed nano-structure and the $TiO_2$ planarization film were almost the same as those of an OLED with a flat glass, and the luminous efficacy of the aforementioned OLED was enhanced by 34% compared to that of an OLED with a flat glass.

고기능 EL소자용 고분자/유기 재료의 합성 및 전기 광학적 특성(Ⅱ) Squarylium 색소를 이용한 EL소자의 특성 (Syntheses of Improved Polymer/Organic Materials for Electroluminescence(EL) Device and Electro-Optical Characteristics(Ⅱ) Properties of EL Device using Squarylium Dye as Emitting Material)

  • 김성훈;배진석;황석환;박이순
    • 대한화학회지
    • /
    • 제41권3호
    • /
    • pp.144-149
    • /
    • 1997
  • N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine(TPD)를 정공수송층으로, squarylium색소를 발광제로, 액정성 폴리머를 TPD의 matrix로 사용하여 electroluminescence(EL) 소자를 제작하였다. ITO 투명전극과 Mg 전극을 각각 홀주입, 전자주입 전극으로 사용하였다. Polymer/TPD 농도를 0.005 wt%로 하여 spin coating법으로 소자를 제작하였을 때 가장 안전한 ELD가 얻어졌다. ITO/polymer-TPD/SQ dye/Mg 구조의 ELD는 인가전압 23 volt에서 붉은색의 발광이 나타났으며 전류는 102 mA/$cm^2$이었다.

  • PDF

Improving current and luminous efficacy of red phosphorescent Organic Light Emitting Diodes (OLEDs) by introducing graded-layer device designs enabled by Organic Vapor Phase Deposition (OVPD)

  • Schwambera, Markus;Keiper, Dietmar;Meyer, Nico;Heuken, Michael;Lindla, Florian;Bosing, Manuel;Zimmermann, Christoph;Jessen, Frank;Kalisch, Holger;Jansen, Rolf H.;Gemmern, Philipp Van;Bertram, Dietrich
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1140-1143
    • /
    • 2009
  • Organic Vapor Phase Deposition (OVPD) equipment enables the accurate and simultaneous control of deposition rates of multiple materials as well as their homogenous mixing in the gas phase. Graded or even cross-faded layers by varying carrier gas flow are options to improve OLED performances. As example, we will show how the efficacies of standard red phosphorescent OLEDs with sharp interfaces can be increased from 18.8 cd/A and 14.1 lm/W (1,000 cd/$m^2$) to 36.5 cd/A (+94 %, 18 % EQE) and 33.7 lm/W (+139 %) by the introduction of cross-fading, which is a controlled composition variation in the organic film.

  • PDF

Fabrication of Flexible OTFT Array with Printed Electrodes by using Microcontact and Direct Printing Processes

  • Jo, Jeong-Dai;Lee, Taik-Min;Kim, Dong-Soo;Kim, Kwang-Young;Esashi, Masayoshi;Lee, Eung-Sug
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.155-158
    • /
    • 2007
  • Printed organic thin-film transistor(OTFT) to use as a switching device for an organic light emitting diode(OLED) were fabricated in the microcontact printing and direct printing processes at room temperature. The gate electrodes($5{\mu}m$, $10{\mu}m$, and $20{\mu}m$) of OTFT was fabricated using microcontact printing process, and source/drain electrodes ($W/L=500{\mu}m/5{\mu}m$, $500{\mu}m/10{\mu}m$, and $500{\mu}m/20{\mu}m$) was fabricated using direct printing process with hard poly(dimethylsiloxane)(h-PDMS) stamp. Printed OTFT with dielectric layer was formed using special coating system and organic semiconductor layer was ink-jet printing process. Microcontact printing and direct printing processes using h-PDMS stamp made it possible to fabricate printed OTFT with channel lengths down to $5{\mu}m$, and reduced the process by 20 steps compared with photolithography. As results of measuring he transfer characteristics and output characteristics of OTFT fabricated with the printing process, the field effect characteristic was verified.

  • PDF

Effect of the substrate temperature on the properties of transparent conductive IZTO films prepared by pulsed DC magnetron sputtering

  • Ko, Yoon-Duk;Kim, Joo-Yeob;Joung, Hong-Chan;Son, Dong-Jin;Choi, Byung-Hyun;Kim, Young-Sung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.167-167
    • /
    • 2010
  • Indium tin oxide (ITO) has been widely used as transparent conductive oxides (TCOs) for transparent electrodes of various optoelectronic devices, such as liquid crystal displays (LCD) and organic light emitting diodes (OLED). However, indium has become increasingly expensive and rare because of its limited resources. In addition, ITO thin films have some problems for OLED and flexible displays, such as imperfect work function, chemical instability, and high deposition temperature. Therefore, multi-component TCO materials have been reported as anode materials. Among the various materials, IZTO thin films have been gained much attention as anode materials due to their high work function, good conductivity, high transparency and low deposition temperature. IZTO thin films with a thickness of 200nm were deposited on Corning glass substrate at different substrate temperature by pulsed DC magnetron sputtering with a sintered ceramic target of IZTO (In2O3 70 wt%, ZnO 15 wt%, SnO2 15 wt%). We investigated the electrical, optical, structural properties of IZTO thin films. As the substrate temperature is increased, the electrical properties of IZTO are improved. All IZTO thin films have good optical properties, which showed an average of transmittance over 80%. These IZTO thin films were used to fabricate organic light emitting diodes (OLEDs) as anode and the device performances studied. As a result, IZTO has utility value of TCO electrode although it reduced indium and we expect it is possible for the IZTO to apply to flexible display due to the low processing temperature.

  • PDF

Effect of the oxygen flow ratio on the structural and electrical properties of indium zinc tin oxide (IZTO) films prepared by pulsed DC magnetron sputtering

  • Son, Dong-Jin;Nam, Eun-Kyoung;Jung, Dong-Geun;Ko, Yoon-Duk;Choi, Byung-Hyun;Kim, Young-Sung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.168-168
    • /
    • 2010
  • Transparent conduction oxides (TCOs) films is extensively reported for optoelectronic devices application such as touch panels, solar cells, liquid crystal displays (LCDs), and organic light emitting diodes(OLEDs). Among the many TCO film, indium tin oxide(ITO) is in great demand due to the growth of flat panel display industry. However, indium is not only high cost but also its deposits dwindling. Therefore, many studies are being done on the transparent conductive oxides(TCOs). We fabricated a target of IZTO(In2O3:ZnO:SnO2=70:15:15 wt.%) reduced indium. Then, IZTO thin films were deposited on glass substrates by pulsed DC magnetron sputtering with various oxygen flow ratio. The substrate temperature was fixed at the room temperature. We investigated the electrical, optical, structural properties of IZTO thin films. The electrical properties of IZTO thin films were dependent on the oxygen partial pressure. As a result, the most excellent properties of IZTO thin films were obtained at the 3% of oxygen flow rate with the low resistivity of $7.236{\times}10^{-4}{\Omega}cm$. And also the optical properties of IZTO thin films were shown the good transmittance over 80%. These IZTO thin films were used to fabricated organic light emitting diodes(OLEDs) as anode and the device performances studied. The OLED with an IZTO anode deposited at optimized deposition condition showed good brightness properties. Therefore, IZTO has utility value of TCO electrode although it reduced indium and we expect it is possible for the IZTO to apply to flexible display due to the low processing temperature.

  • PDF