DOI QR코드

DOI QR Code

고분자 정공수송층에 용액 공정 도핑법을 적용한 인광 유기전기발광소자

Solution processed doping to the polymer hole transporting layer for phosphorescent organic light-emitting diodes

  • Sung, Baeksang (Department of Creative Convergence Engineering, Hanbat National University) ;
  • Lee, Jangwon (Department of Creative Convergence Engineering, Hanbat National University) ;
  • Lee, Seung-Hoon (Department of Creative Convergence Engineering, Hanbat National University) ;
  • Yoo, Jae-Min (Department of Creative Convergence Engineering, Hanbat National University) ;
  • Lee, Jae-Hyun (Department of Creative Convergence Engineering, Hanbat National University) ;
  • Lee, Jonghee (Department of Creative Convergence Engineering, Hanbat National University)
  • 투고 : 2020.07.10
  • 심사 : 2020.09.17
  • 발행 : 2020.09.30

초록

본 연구에서는 유기전기발광소자의 전기적 특성을 향상시키기 위한 방법으로, 용액공정 도핑법이 도입된 고분자 poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4′-(N-(4-sec-butylphenyl)diphenylamine)] (TFB)기반의 정공수송층을 제안하였다. 정공수송층 소재 TFB 용액 내에 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN)를 3 wt% 도핑을 하여 정공수송층의 전기적 특성을 향상 시켰다. 이를 통해 HAT-CN이 도핑된 TFB을 이용한 유기전기발광소자에서는 향상된 정공수송층의 전도도를 통해 동일 구동 전압 시 전류 밀도와 휘도가 증가하였고, 점등 개시 전압이 13V에서 9V로 줄어드는 것을 확인하였다. 또한, 도핑법이 적용되지 않은 기준 소자 대비 최대 외부양자효율이 3.6%에서 10.8%로 약 3배 향상 되는 것을 확인하였다.

In this study, a facial way to enhance the electrical properties of organic light-emitting diodes (OLEDs) via the solution process doping method based on the poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl) diphenylamine)] (TFB) as a hole transporting layer (HTL) is demonstrated. In the TFB solution of the hole transport material, 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN) was doped by 3 wt% to improve the electrical properties of the HTL. According, the OLED with HAT-CN doped TFB showed the increased current density and luminance at the same driving voltage on behalf of the improved conductivity of HTL, and the reduced turn-on voltage from 13 V to 9 V. Furthermore, the maximum external quantum efficiency was dramatically increased three times from 3.6 to 10.8 % compared to the reference device without appling doping methode.

키워드

참고문헌

  1. M. Cai, J. Shinar, "High-Efficiency Solution-Processed Small Molecule Electrophosphorescent Organic Light-Emitting Diodes," Adv. Mater. vol.23, pp.3590-3596, 2011. DOI: 10.1002/adma.201101154
  2. L. Duan, Y. Qiu, "Solution processable small molecules for organic light-emitting diodes," J. Mater. Chem., vol.20, pp.6392-6407, 2010. DOI: 10.1039/b926348a
  3. H-W. Chang, C-C. W, "Color-stable, ITO-free white organic light-emitting diodes withenhanced efficiency using solution-processed transparentelectrodes and optical outcoupling layers," Organic Electronics, Vol.15 pp.1028-1034, 2014. DOI: 10.1016/j.orgel.2014.02.017
  4. H. Choi, K. Kim, "Solution processed WO3 layer for the replacement of PEDOT:PSS layer in organic photovoltaic cells," Organic Electronics, Vol.13, Issue 6, pp.959-968. DOI: 10.1016/j.orgel.2012.01.033
  5. Y H. Kim, J. Lee, K. Leo, "Achieving High Ef fi ciency and Improved Stability in ITO-Free Transparent Organic Light-Emitting Diodes with Conductive Polymer Electrodes," Adv. Funct. Mater. Vol.23, pp.3763-3769, 2013. DOI: 10.1002/adfm.201203449
  6. S. Murase, Y. Yang, "Solution Processed $MoO_{3}$ Interfacial Layer for Organic Photovoltaics Prepared by a Facile Synthesis Method," Adv. Mater. Vol.24, pp.2459-2462, 2012. DOI: 10.1002/adma.201104771
  7. M. R. Nagar, J-H. Jou, "Solution Process Feasible Highly Efficient Organic Light Emitting Diode with Hybrid Metal Oxide Based Hole Injection/Transport Layer" MRS Advances, pp.1-9. DOI: 10.1557/adv.2019.300
  8. J. J. Park, J. H. Kwon, "Small molecule interlayer for solution processed phosphorescent organic light emitting device," Organic Electronics 10, pp.189-193, 2009. DOI: 10.1016/j.orgel.2008.08.014
  9. L. S. Liao, K. P. Klubek, "Power efficiency improvement in a tandem organic light-emitting diode," Appl. Phys. Lett. 92, 223311, 2008. DOI: 10.1063/1.2938269
  10. J-H. Lee, J-J. Kim, "A high performance transparent inverted organic light emitting diode with 1,4,5,8,9,11-hexaazatriphenylenehexacarbonit rile as an organic buffer layer," J. Mater. Chem., Vol.22, No.15262, 2012, DOI: 10.1039/c2jm32438e
  11. J. Lee, J-H. LEE, "Efficient Green Phosphorescent OLEDs with Hexaazatrinaphthylene Derivatives as a Hole Injection Layer," Appl. Chem. Eng., Vol.26, No.6, December 2015, 725-729. DOI.org/10.14478/ace.2015.1108
  12. S. Reineke, K. Leo, "Reduced efficiency rolloff in phosphorescent organic light emitting diodes by suppression of triplet-triplet annihilation," Appl. Phys. Lett. Vol.91, No.123508 2007. DOI: 1l0.1063/1.2786840
  13. J. Meyer, T. Riedl, "Highly efficient simplified organic light emitting diodes," Appl. Phys. Lett. 91, pp.113506 2007. DOI: 10.1063/1.2784176
  14. G. Rajanm, Ritu Srivastava, O. P. Sinha, "Study of injection and transport properties of metal/organic interface using HAT-CN molecules as hole injection layer," Vacuum 146 (2017) 530-536. DOI.org/10.1016/j.vacuum.2017.07.007
  15. Y. Xu, Y-Y. Noh, "Doping: A Key Enabler for Organic Transistors," Adv. Mater. 2018, 30, 1801830. DOI: 10.1002/adma.201801830
  16. M. Schwarze, K. Leo, "Molecular parameters responsible for thermally activated transport in doped organic semiconductors," Nature Materials. 2018, s41563-018-0277-0. DOI.:10.1038/s41563-018-0277-0