• Title/Summary/Keyword: Organic geometry

Search Result 96, Processing Time 0.025 seconds

Synthesis of Novel Platinum Precursor and Its Application to Metal Organic Chemical Vapor Deposition of Platinum Thin Films

  • Lee, Sun-Sook;Lee, Ho-Min;Park, Min-Jung;An, Ki-Seok;Kim, Jin-Kwon;Lee, Jong-Heun;Chung, Taek-Mo;Kim, Chang-Gyoun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1491-1494
    • /
    • 2008
  • A novel platinum aminoalkoxide complex, Pt$(dmamp)_2$ has been prepared by the reaction of cis-$(py)_2PtI_2$ with two equivalents of Na(dmamp) (dmamp = 1-dimethylamino-2-methyl-2-propanolate). Single-crystal X-ray crystallographic analysis shows that the Pt(dmamp)2 complex keeps a square planar geometry with each two nitrogen atoms and two oxygen atoms having trans configuration. Platinum films have been deposited on TaN/ Ta/Si substrates by metal organic chemical vapor deposition (MOCVD) using Pt$(dmamp)_2$. As-deposited platinum thin films did not contain any appreciable amounts of impurities except a little carbon. As the deposition temperature was increased, the films resistivity and deposition rate increased. The electrical resistivity (13.6 $\mu\Omega$cm) of Pt film deposited at 400 ${^{\circ}C}$ is a little higher than the bulk value (10.5 $\mu\Omega$cm) at 293 K. The chemical composition, crystalline structure, and morphology of the deposited films were investigated by X-ray photoelectron spectroscopy, X-ray diffraction, and atomic force microscopy.

A Study on Comparing Characteristics of Frank Loyd Wright's Furniture Design with Charles Rennie Mackintosh (프랭크 로이드 라이트와 찰스 레니 맥킨토시의 가구디자인 비교 연구)

  • Ha, Sook-Nyung;Han, Young-Ho
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.6
    • /
    • pp.91-99
    • /
    • 2010
  • There is a commonality between Frank Lloyd Wright and Charles Rennie Mackintosh in that they created the new patterns of geometric Art Nouveau from the late 19th and early 20th centuries. This study compares the furniture of Wright and Mackintosh who had significant impacts on the development of modern design for each of the periods divided by their design feature to find the individualities and similarities of their design. It is an analytical approach with an accurate understanding of the design trends of the Art Nouveau era. The results of the furniture comparison are as follows: The finding is that Wright and Mackintosh designed creative furniture in harmony with a specific indoor space, Organic design was well expressed through the selection and use of wooden materials, Based on the understanding of tree characteristics, they did not use detailed decorations, but designed the simple and rigorous forms of furniture with highlighted interest in geometry. As for shape, Wright's furniture in his early days tend to be look largely formal and heavy. Since his debut in Japan in 1905, the furniture design became very sophisticated. On the other hand, Mackintosh's chairs are characterized by plenty of geometric patterns and long back. In many cases, his chairs were designed as part of formative elements in space, not for the purpose of furniture itself. As for materials and colors, Wright used mainly cherry wood. And he also utilized metals colored in olive green, red-brown and others for office furniture. The frames, fabrics and leather used for most of the furniture have natural colors, which are harmonious with spaces. Meantime, Mackintosh used primarily oak and ash trees. He used seat cushions and various colors to make the design of furniture have a sophisticated and simple image. The materials used for seat panel are horsehair, rush, silk and leather. He applied these materials to the furniture by weaving or cutting them.

Solution-Processable Field-Effect Transistors Fabricated Using Aryl Phenoxazine Based Polymers as the Active Layer

  • Yoon, Hye-Seon;Lee, Woo-Hyung;Lee, Ji-Hoon;Lim, Dong-Gun;Hwang, Do-Hoon;Kang, In-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2371-2376
    • /
    • 2009
  • Three phenoxazine-based conjugated polymers, namely, the aryl substituted phenoxazine homopolymer (P1) as well as the dimeric phenoxazine-fluorene (P2) and phenoxazine-bithiophene (P3) copolymers, were synthesized via the Ni(0) mediated Yamamoto reaction and the palladium-catalyzed Suzuki coupling reaction. The weight-averaged molecular weights ($M_w$) of P1, P2, and P3 were found to be 27,000, 22,000, and 15,000, respectively, and their polydispersity indices were 3.6, 1.8, and 2.1. All the polymers were soluble in common organic solvents such as chloroform, toluene, and so on. The UV-visible absorption maxima for P1, P2, and P3 in the film state were located at 421, 415 and 426 nm, respectively, and the ionization potentials of the polymers ranged between 4.90 and 5.12 eV. All the studied phenoxazine-based polymers exhibited amorphous behavior, as confirmed by X-ray diffraction (XRD) and atomic force microscopy (AFM) studies. Thin film transistors were fabricated using the top-contact geometry. P1 showed much better thin-film-transistor performance than P2 or P3: A thin film of P1 gave a saturation mobility of 0.81 ${\times}\;10^{-3}\;cm^2V^{-1}s^{-1}$ and an on/off ratio of about $10^2$.

Strength and compressibility characteristics of peat stabilized with sand columns

  • Jorat, M. Ehsan;Kreiter, Stefan;Morz, Tobias;Moon, Vicki;de Lange, Willem
    • Geomechanics and Engineering
    • /
    • v.5 no.6
    • /
    • pp.575-594
    • /
    • 2013
  • Organic soils exhibit problematic properties such as high compressibility and low shear strength; these properties may cause differential settlement or failure in structures built on such soils. Organic soil removal or stabilization are the most important methods to overcome geotechnical problems related to peat soils' engineering characteristics. This paper presents soil mechanical intervention for stabilization of peat with sand columns and focuses on a comparison between the mechanical characteristics of undisturbed peat and peat stabilized with 20%, 30% and 40% of sand on the laboratory scale. Cylindrical columns were extruded in different diameters through a nearly undisturbed peat sample in the laboratory and filled with sand. By adding sand columns to peat, higher permeability, higher shear strength and a faster consolidation was achieved. The sample with 70% peat and 30% sand displayed the most reliable compressibility properties. This can be attributed to proper drainage provided by sand columns for peat in this specific percentage. It was observed that the granular texture of sand also increased the friction angle of peat. The addition of 30% sand led to the highest shear strength among all mixtures considered. The peat samples with 40% sand were sampled with two and three sand columns and tested in direct shear and consolidation tests to evaluate the influence of the number and geometry of sand columns. Samples with three sand columns showed higher compressibility and shear strength. Following the results of this laboratory study it appears that the introduction of sand columns could be suitable for geotechnical peat stabilization in the field scale.

Selective Growth of Nanosphere Assisted Vertical Zinc Oxide Nanowires with Hydrothermal Method

  • Lee, Jin-Su;Nam, Sang-Hun;Yu, Jung-Hun;Yun, Sang-Ho;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.252.2-252.2
    • /
    • 2013
  • ZnO nanostructures have a lot of interest for decades due to its varied applications such as light-emitting devices, power generators, solar cells, and sensing devices etc. To get the high performance of these devices, the factors of nanostructure geometry, spacing, and alignment are important. So, Patterning of vertically- aligned ZnO nanowires are currently attractive. However, many of ZnO nanowire or nanorod fabrication methods are needs high temperature, such vapor phase transport process, metal-organic chemical vapor deposition (MOCVD), metal-organic vapor phase epitaxy, thermal evaporation, pulse laser deposition and thermal chemical vapor deposition. While hydrothermal process has great advantages-low temperature (less than $100^{\circ}C$), simple steps, short time consuming, without catalyst, and relatively ease to control than as mentioned various methods. In this work, we investigate the dependence of ZnO nanowire alignment and morphology on si substrate using of nanosphere template with various precursor concentration and components via hydrothermal process. The brief experimental scheme is as follow. First synthesized ZnO seed solution was spun coated on to cleaned Si substrate, and then annealed $350^{\circ}C$ for 1h in the furnace. Second, 200nm sized close-packed nanospheres were formed on the seed layer-coated substrate by using of gas-liquid-solid interfacial self-assembly method and drying in vaccum desicator for about a day to enhance the adhesion between seed layer and nanospheres. After that, zinc oxide nanowires were synthesized using a low temperature hydrothermal method based on alkali solution. The specimens were immersed upside down in the autoclave bath to prevent some precipitates which formed and covered on the surface. The hydrothermal conditions such as growth temperature, growth time, solution concentration, and additives are variously performed to optimize the morphologies of nanowire. To characterize the crystal structure of seed layer and nanowires, morphology, and optical properties, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and photoluminescence (PL) studies were investigated.

  • PDF

Scuffing and Wear of the Vane/Roller Surfaces for Rotary Compressor Depending on Several Sliding Condition

  • Lee, Y.Z.;Oh, S.D.;Kim, J.W.;Kim, C.W.;Choi, J.K.;Lee, I.J.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.227-228
    • /
    • 2002
  • One of the serious challenges in developing rotary compressor with HFC refrigerant is the prediction of scuffing times and wear amounts between vane and roller surface. In this study, the tribological characteristics of sliding surfaces using roller-vane geometry of rotary compressor were investigated. The sliding tests were carried out under various sliding speeds, normal loads and surface roughness. During the tests, friction force, wear scar width, time to failure, surface temperature, and surface roughness were monitored. Because severe wear was occurred on vane surface, TiN coating was applied on sliding surfaces to prolong the wear-life of vane-roller interfaces. From the sliding tests, it was found that there was the optimum initial surface roughness to break in and to prolong the wear life of sliding surfaces. Depending on load and speed, the protective layers, which were composed of metallic oxide and organic compound, were formed on sliding surfaces. Those would play an important role in the amount of friction and wear between roller and vane surfaces.

  • PDF

Friction and Wear of the Vane/Roller Surfaces Depending on Several Sliding Condition for Rotary Compressor (여러 미끄럼 조건에 따른 로터리 압축기 베인/롤러 표면의 마찰 마멸 특성)

  • Lee, Young-Ze;Oh, Se-Doo;Kim, Jong-Woo;Kim, Cheol-Woo;Choi, Jin-Kyu;Cho, Sung-Ook
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.221-226
    • /
    • 2002
  • One of the serious challenges in developing rotary compressor with HFC refrigerant is the prediction of scuffing times and wear amounts between vane and roller surfaces. In this study, the tribological characteristics of sliding surfaces using vane-roller geometry of rotary compressor were investigated. The sliding tests were carried out under various sliding speeds, normal loads and surface roughness. During the test friction force, wear depth, time to failure and surface temperature were monitored. Because severe wear was occurred on vane surface, TiN coating was applied on sliding surfaces to prolong the wear-life of vane-roller interfaces. From the sliding test it was found that there was the optimum initial surface roughness to break in and to prolong the wear life of sliding surfaces. Depending on the load and speed, the protective layers, which were composed of metallic oxide and organic compound, were formed on sliding surfaces. Those would play an important role in role amounts of friction and wear between miler and vane surfaces.

  • PDF

C-H···π and C-H···O Interactions in Coumarin 6 : 3-(2-benzothiazolyl)-7-(diethylamino)-coumarin

  • Li, Xiaochuan;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.22 no.2
    • /
    • pp.83-87
    • /
    • 2010
  • Crystal structure of coumarin 6 has been solved by X-ray diffraction. The crystals are triclinic, space group P-1, with a=8.823(2) ${\AA}$, b=8.898(2) ${\AA}$, c=11.025(9) ${\AA}$, ${\alpha}$=86.41(3)$^{\circ}$, ${\beta}$=85.39(3)$^{\circ}$, ${\gamma}$=76.23(3)$^{\circ}$, Mr=350.42, V=837.1(3) ${\AA}^3$, Z=2 and R=0.0516. The molecules are packed parallel to each other by weaker ${\pi}{\cdots}{\pi}$ and C-H${\cdots}{\pi}$ interactions. The detailed geometry of C-H${\cdots}{\pi}$ interactions were discussed. The hydrogen bonds and non-traditional C-H${\cdots}O$ interactions join the no-parallel molecules together. All the molecules packed wall-like with the molecular brick.

Odor Removal Characteristics of Biofilters in Domestic Sewage Treatment Facilities Analyzing Composite Odor and Odor Quotient (복합악취와 악취농도지수 분석을 통한 국내 하수처리시설 바이오필터의 악취제거 특성)

  • Ko, Byung-Churl;Park, Young-Ho;Kim, Dong-Il;Lee, Min-Gyu;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.22 no.1
    • /
    • pp.109-117
    • /
    • 2013
  • The removal characteristics of composite odor and malodorous substances using 33 biofilters in sewage treatment facilities were investigated. The geometry mean values of composite odor and odor quotient were reduced by 52.7% and 59.2% at the outlet of the biofilters, respectively. The removal efficiencies of the biofiltes for the composite odor and odor quotient show a significant difference statistically(p=0.000<0.05). The median value of odor quotient of sulfur compounds was reduced by 69.1% at the outlet of the biofilter and the odor quotient of the sulfur compound at the inlet and outlet of the biofilter shows a significant difference statistically(p=0.000<0.05); on the other hand, those of the $NH_3$ and trimethylamine, aldehydes, VOCs and alcohols, organic acids do not.

Electrochemical Properties of FeS2 Thin Film Electrodes for Thermal Batteries (열전지용 FeS2 박막전극의 전기화학적 특성)

  • Im, Chae-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.318-324
    • /
    • 2017
  • Powder compaction technology is widely used to prepare thermal battery components. This method, however, is limited by the size, thickness, and geometry of the battery components. This limitation leads to excessive cell capacity, overweight, and higher cost of the pellets, which decreases the specific capacities and delays the activation time of thermal batteries. $FeS_2$ thin-film cathodes were fabricated by tape-casting technology and analyzed by SEM and EDS in this paper. The residual organic binder of the $FeS_2$ thin-film cathodes decreased with the temperature of the heat treatment, which improved the specific capacity because of the lower resistance. Specific capacities of the $FeS_2$ thin-film cathodes decreased because of the higher residual binder and the restrictive reaction of active materials with molten salts as the thickness increased. $FeS_2$ thin-film cathodes showed much higher specific capacity (1,212.2 As/g) than pellet cathodes (860.7 As/g) at the optimal heat-treatment temperature ($230^{\circ}C$).