• Title/Summary/Keyword: Organic functional group

Search Result 185, Processing Time 0.034 seconds

Reaction of Representative Organic Compounds with Sodium Borohydride in the Presence of Aluminum Chloride (염화알루미늄 존재하에서의 수소화붕소나트륨과 대표적 유기화합물과의 반응)

  • Yoon Nung Min;Ho Jun Leeq;Jin Soon Chung
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.275-285
    • /
    • 1973
  • The addition of one mole of aluminum chloride to three moles of sodium borohydride in tetrahydrofuran gives a turbid solution with enormously more powerful reducing properties than those of sodium borohydride itself. The reducing properties of this reagent were tested with 49 organic compounds which have representative functional groups. Alcohols liberated hydrogen immediately but showed no sign of hydrogenolysis of alkoxy group. Aldehydes and ketones were reduced rapidly within one hr. Acyl derivatives were reduced moderately, however, carboxylic acids were reduced much more slowly. Esters, lactones and epoxides were reduced readily than sodium borohydride or borane. Tertiary amide was reduced slowly, however, primary amide consumed one hydride for hydrogen evolution but reduction was sluggish. Aromatic nitrile was reduced much more readily than aliphatic nitrile. Nitro compounds were inert to this reagent but azo and azoxy groups were slowly attacked. Oxime was reduced slowly but isocyanate was only partially reduced. Disulfide and sulfoxide were attacked slowly but sulfide and sulfone were inert. Olefin was hydroborated rapidly.

  • PDF

454 Pyrosequencing Analysis of Bacterial Diversity Revealed by a Comparative Study of Soils from Mining Subsidence and Reclamation Areas

  • Li, Yuanyuan;Chen, Longqian;Wen, Hongyu;Zhou, Tianjian;Zhang, Ting;Gao, Xiali
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.3
    • /
    • pp.313-323
    • /
    • 2014
  • Significant alteration in the microbial community can occur across reclamation areas suffering subsidence from mining. A reclamation site undergoing fertilization practices and an adjacent coal-excavated subsidence site (sites A and B, respectively) were examined to characterize the bacterial diversity using 454 high-throughput 16S rDNA sequencing. The dominant taxonomic groups in both the sites were Proteobacteria, Acidobacteria, Bacteroidetes, Betaproteobacteria, Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Deltaproteobacteria, Chloroflexi, and Firmicutes. However, the bacterial communities' abundance, diversity, and composition differed significantly between the sites. Site A presented higher bacterial diversity and more complex community structures than site B. The majority of sequences related to Proteobacteria, Gemmatimonadetes, Chloroflexi, Nitrospirae, Firmicutes, Betaproteobacteria, Deltaproteobacteria, and Anaerolineae were from site A; whereas those related to Actinobacteria, Planctomycetes, Bacteroidetes, Verrucomicrobia, Gammaproteobacteria, Nitriliruptoria, Alphaproteobacteria, and Phycisphaerae originated from site B. The distribution of some bacterial groups and subgroups in the two sites correlated with soil properties and vegetation due to reclamation practice. Site A exhibited enriched bacterial community, soil organic matter (SOM), and total nitrogen (TN), suggesting the presence of relatively diverse microorganisms. SOM and TN were important factors shaping the underlying microbial communities. Furthermore, the specific plant functional group (legumes) was also an important factor influencing soil microbial community composition. Thus, the effectiveness of 454 pyrosequencing in analyzing soil bacterial diversity was validated and an association between land ecological system restoration, mostly mediated by microbial communities, and an improvement in soil properties in coal-mining reclamation areas was suggested.

Large Area Deposition of Biomimetic Polydopamine-Graphene Oxide Hybrids using Langmuir-Schaefer Technique (랭뮤어-쉐퍼 기법 이용 생체모사 폴리도파민-산화그래핀 복합체 대면적 적층 기법 연구)

  • Kim, Tae-Ho;Song, Seok Hyun;Jo, Kyung-Il;Koo, Jaseung
    • Journal of Adhesion and Interface
    • /
    • v.20 no.3
    • /
    • pp.110-115
    • /
    • 2019
  • Graphene oxide has been gathering interests as a way to exfoliate graphene. Since the oxidation group of graphene oxide can hydrogen bond with various functional groups, tremendous efforts have been actively conducted to apply various applications. However, graphene oxide alone cannot substantially possess the mechanical properties required for the practical application. Therefore, in this study, polydopamine, which is a bio-mimetic mussel protein-inspired material, was combined with graphene oxide to form a large-area composite membrane at the liquid-gas interface. In addition, the morphology of the polydopamine-graphene oxide composite thin film was also controlled to obtain a composite membrane having a nano-wrinkle structure. It can be expected to be used in the next generation seawater desalination membranes or carbon composites because it can form mechanically superior and sophisticated nanostructures.

Diagnostic Method for Inborn Metabolic Disorders using differentiation between D- and R- Isomers on GC-MS (D체와 R체 이성질체 판별과 GC-MS를 이용한 유전성 대사이상질환의 진단법 개발)

  • Yoon, Hye-Ran
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.15 no.2
    • /
    • pp.65-71
    • /
    • 2015
  • Since the secretion of specific chiral isomers in urine (or plasma) is very crucial to diagnose some inborn metabolic disorders, clinical application of dual column achiral differential method has been performed for the absolute configuration of chiral compounds. Extracted from the acidified urine with diethyl ether, carboxylic functional group of organic acid (stereoisomers of the volatile) was derivatized with (-)-menthylation or (S)-(+)-3-methyl-2-butylation and followed by O-trifluoroacylation. Each of the enantiomers was accurately separated from the library matched double column (achiral) with a retention index (I). In various inborn metabolic disease urines, absolute chirality was identified correctly in the urine (10 patients) with inborn metabolic disease (including secretion of D, L- lactic acid, D, L-3-hydroxybutyric acid, and D, L-2-hydroxyglutaric acid). In this study, we identified and isolated the volatile diastereomer as a useful diagnostic marker, this successful application to urine specimens may be useful for diagnostic classification of inherited metabolic disorders.

Effect of Residual Chlorine on the Analysis of Geosmin and 2-MIB Using SPME (Solid Phase Microextraction) (SPME를 이용한 Geosmin과 2-MIB분석 시 잔류염소의 영향에 관한 연구)

  • Kim, Sung-Jin;Hong, Seong-Ho;Min, Dal-Ki
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.713-719
    • /
    • 2005
  • SPME (Soild phase microextraction) has been used in the analysis of many volatile organic compounds, such as geosmin and 2-methylisoborneol (2-MIB), trihalomethanes (THMs) in drinking water. SPME fiber is characterized by high adsorption capacity (DVB/CAR/PDMS, DVB/PDMS etc.). Although the highly active adsorption capacities of the SPME fiber are often to the chemical functional group, surface properties play a significant role in determining the surface adsorption capacities. The objectives of this study were to evaluate effect of residual chlorine on analysis of geosmin and 2-MIB. Image taken by SEM before preloaded with chlorine, the surface and porous media was almost perfect spherical shape and no clogging of pores. However, after preloaded with chlorine the surface was aggregated and pore was blocked. The recovery rate of geosmin and 2-MIB coexisting with chlorine was reduced by 35 to 62%. The recovery rate with preloaded with chlorine was reduced by 25 to 43%. The lower concentration of geosmin and 2-MIB and the higher concentration of chlorine existed in water, the lower the recovery rate was.

A New Combined Source of "CN" from N,N-Dimethylformamide and Ammonia in the Palladium-Catalyzed Cyanation of Aryl C-H Bonds

  • Choi, Ji-Ho;Kim, Jin-Ho;Chang, Suk-Bok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.207-207
    • /
    • 2011
  • Aromatic nitriles possess versatile utilities and are indispensible not only in organic synthesis but also in chemical industry. In fact, the nitrile group is an important precursor for various functional groups such as aldehydes, amines, amidines, tetrazoles, amides, and their carboxyl derivatives. Representative methods for the preparation of organonitriles with cyanide-containing reagents are the Sandmeyer and Rosenmund-von Braun reactions. Recently, a catalytic route to aryl nitriles has been reported on the basis of the chelation-assisted C-H bond activation or metal-catalyzed cyanation of haloarenes. In those cyanation protocols, the "CN" unit is provided from metal-bound precursors of MCN (M=Cu, K, Na, Zn), TMSCN, or K3Fe(CN)6. Additionally, it can be generated in situ from nitromethane or acetone cyanohydrin. Herein, we report the first example of generating "CN" from two different, readily available precursors, ammonia and N,N-dimethylformamide (DMF). In addition, its synthetic utility is demonstrated through the Pd-catalyzed cyanation of arene C-H bonds.

  • PDF

Ion-Pair Chromatography of Benzoic Acid and Its Derivatives on XAD-2 (XAD-2 지지체를 이용한 벤조산과 그 유도체들의 이온쌍 크로마토그래피에 관한 연구)

  • Kang, Sam-Woo;Ryu, Sam-Gon;Park, Young-Kyu
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.176-184
    • /
    • 1984
  • Retention behavior of benzoic acid and its derivatives on XAD-2 in the alcoholic aqueous solution was investigated and separation was attempted. Retention was affected by the concentration and kinds of added organic solvents, the pH of the aqueous solution, the added $R_4N^+$ and the position and kinds of functional group in the sample molecules. Retention of sample acids in acidic conditions was due to mainly molecular adsorption on nonpolar XAD-2 surface and that in basic conditions was due to mainly ion-pair model. In these bases a mixed sample was separated in EtOH 20% aqueous solution at pH 8.50.

  • PDF

Competition of Sulfate for Sorption Sites of Cecil Bt Soil in Binary Anion System (2중 음이온 체계내에서 시슬 Bt토양의 흡착부위에 대한 황산이온의 경쟁)

  • Chung, Doug Young
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.2
    • /
    • pp.250-260
    • /
    • 1996
  • Observed results of the adsorption between two competing anions for the shared sorption sites represent that the adsorption phenomena may depends on the characteristics of anion and available sorption sites in a given conditions. In binary systems, adsorption of one species can significantly influence the fate of the other anion, resulting in control of the extent of solute-adsorbate distributions throughout soil profile. And the proton-donation mechanisms by organic anions having a carboxyl as a functional group can also influence the adsorption of inorganic anions onto the hydroxylated sites of Fe and Al oxides. However, study of competitive adsorption of specifically adsorbed anions illustrates some of difficulties which arise in interpretation of reactions at oxide/aqueous solution interfaces. At least two factors prevented a simple analysis of reactions. First, at any pH value the maximum amount of adsorbate taken up at the surface depends on the identity of the anion. Second, it was necessary to postulate the sorption sites where the anion can be adsorbed. Hence, anions having non-specific adsorption characteristics are less capable for sorption sites, compared to those of specific adsorption characteristics, even though competition complies both ordinary and electrostatic interactions for sorption sites. Therefore, competition among chemical species in soil matrix can be of major significance in determining the effective mobility of any reactive anions with sorption sites.

  • PDF

Study on the Electron Injection of Newly Synthesized Organic Sensitizer in Dye-Sensitized Solar Cell

  • Gang, Tae-Yeon;Lee, Do-Gwon;Go, Min-Jae;Kim, Gyeong-Gon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.310-310
    • /
    • 2010
  • Electronic and photovoltaic characteristics of two sensitizers (TA-BTD-CA and TA-BTD-St-CA), composed of a different $\pi$-conjugation in the linker group, have been investigated by theoretical and experimental methods. The electronic structure, transition dipole moment and oscillator strengths of two sensitizers have been scrutinized by using density functional theory (DFT) and time-dependent DFT (TD-DFT) method. The LUMO level and the oscillator strength of TA-BTD-St-CA was higher than that of TA-BTD-CA, which may facilitate the electron injection process as well as increase the absorption coefficient. The relative efficiencies of the electron injection from the excited sensitizer to nanocrystalline TiO2 and SnO2 films have also been investigated by nanosecond transient absorption spectroscopy. The relative electron injection efficiency of TA-BTD-St-CA exhibited similar injection efficiency for two different semiconductors. However, in the case of TA-BTD-CA sensitizer, electron injection into SnO2 was approximately three times larger than that into TiO2. This enhancement of electron injection of TA-BTD-CA for the SnO2 is due to the increment of the driving force caused by positive shift of conduction band of semiconductor, which was also confirmed from the investigation for the photovoltaic characteristics according to the electrolyte additive, such as LiI additive.

  • PDF

Effect of Fractionated Organic Matter on Membrane Fouling (분류된 천연유기물질을 이용한 막 오염 특성 평가)

  • Lee, Byung-Gu;Son, Hee-Jong;Roh, Jae-Soon;Hwang, Young-Do;Jung, Chul-Woo;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1321-1326
    • /
    • 2005
  • As a results of this research, the Nakdong River consisted of 43% of hydrophobic fraction, 39% of hydrophilic fraction, and 18% of transphilic fraction. The hydrophobic fraction in this raw water was mostly fulvic acid. Fulvic acid comprised of 62% and the rest was humic acid(38%). There was more carboxylic acid functional roup(64%) than phenolic group(36%). HPI-N and HPI-C comprised of 17% and 22% in the hydrophilic portion, respectively. The results of the membrane fouling test using UF membrane according to NOM fractions. HPI-N caused more fouling than HPI-C. Humic acid caused more fouling than fulvic acid probably due to higher adsorption capacity. Since humic acid has higher adsorption capacity than fulvic acid, it would be more adsorbed onto the membrane pores. The carboxylic acid functional group caused more fouling than the phenolic group.