• 제목/요약/키워드: Organic device

검색결과 1,355건 처리시간 0.033초

유기박막의 Electroluminescent(EL) 특성 (Electroluminescent Characteristics of Organic Thin Film)

  • 문종대
    • 전기학회논문지
    • /
    • 제57권1호
    • /
    • pp.88-91
    • /
    • 2008
  • Electroluminescent(EL) devices based on organic thin films are considered to be one of the next generation of flat-panel displays. In this paper, we have investigated electro-luminescent(EL) characteristics of organic EL device using $Alq_3$, PBD as emitting material. Current and luminance can be seen that express a similar relativity in voltage and could know that luminance is expressing current relativity.

New SMOLED Deposition System for Mass Production

  • Lee, J.H.;Kim, C.W.;Choi, D.K.;Kim, D.S.;Bae, K.B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.407-410
    • /
    • 2003
  • We will introduce our new concept deposition system for SMOLED manufacturing in this conference. This system is designed to deposit organic and metal material to downward to overcome the limit of substrate size and process tact time hurdle for OLED mass production, and is organized with organic deposition chamber, substrate pre-cleaning chamber, metal deposition chamber and encapsulation system. These entire process chambers are integrated with linear type substrate transfer system. We also compare our new SMOLED manufacturing system with conventional vacuum deposition systems, and show basic organic thin film property data, organic material deposition property data, and basic device property.

  • PDF

유기 박막의 EL특성 (Electroluminescent Characteristics of Organic Thin Films)

  • 송진원;최용성;이경섭
    • 한국전기전자재료학회논문지
    • /
    • 제20권2호
    • /
    • pp.178-182
    • /
    • 2007
  • Electroluminescent (EL) devices based on organic thin films are considered to be one of the next generation of flat-panel displays. In this paper, we have investigated electro-luminescent (EL) characteristics of organic EL device using $Alq_{3}$, PBD as emitting material. Current and luminance can be seen that express a similar relativity in voltage and could know that luminance is expressing current relativity.

X-shaped Conjugated Organic Materials for High-mobility Thin Film Transistor

  • Choi, Dong-Hoon;Park, Chan-Eon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.310-311
    • /
    • 2009
  • New X-shaped crystalline molecules have been synthesized through various coupling reactions and their electronic properties were investigated. They exhibit good solubility in common organic solvents and good self-film forming properties. They are intrinsically crystalline as they exhibit well-defined X-ray diffraction patterns from uniform and preferred orientations of molecules. They also exhibited high field effect mobilities in thin film transistor (TFT) and good device performances.

  • PDF

Energy-level alignment and charge injection at electrodeorganic interfaces

  • Helander, M.G.;Wang, Z.B.;Lu, Z.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.112-114
    • /
    • 2009
  • Charge injection at electrode-organic interfaces is key to the performance, lifetime and stability of organic electronic devices. The link between fundamental material properties and the energy-level alignment at electrode-organic interfaces will be discussed. In addition the impact of the injection barrier height-a parameterization of the energylevel alignment-on device characteristics will also be discussed.

  • PDF

P3HT를 이용한 다층막 전계발광 소자의 전기-광학적 특성 (The Electro-optical Properties of Multilayer EL Devices with P3HT as Emitting layer)

  • 김대중;김주승;김정호;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.1018-1021
    • /
    • 2003
  • We have synthesized poly(3-hexylthiophene) and studied the optical properties of P3HT for applying to the red emitting materials of organic electroluminescent device. Usually, an organic EL device is composed of single layer like anode/emitting layer/cathode, but additional layer such as hole transport, electron transport and buffer layer is deposited to improve device efficiency. In this study, Multilayer EL devices were fabricated using tris(8-hydroxyquinolinate) aluminum($Alq_3$) as electron transport material, (N,N'-diphenyl-N,,N'(3-methylphenyl)-1,1'-biphenyl-4,4'diamine))(TPD) as hole transport/electron blocking materials and LiF as buffer layer. That is, a device structure of ITO/blending layer(TPD+P3HT)/$Alq_3$/LiF/Al was employed. In the Multilayer device, the luminance of $10{\mu}W/cm^2$ obtained at 10V. And, we present the experimental evidence of the enhancement of the Foster energy transfer interaction in emitting layer.

  • PDF

전기-광 변환소자 응용을 위한 적색 유기 EL 소자의 광변조 특성 (Optical Modulation Characteristics of Red Organic Light Emitting Diodes for the Application on the Electro-optical Conversion Device)

  • 김주승;구할본
    • 한국전기전자재료학회논문지
    • /
    • 제18권6호
    • /
    • pp.576-581
    • /
    • 2005
  • We fabricated red organic light emitting diodes(OLEDs) utilizing tis(8-hydroxyquinoline) aluminum $(Alq_3)$ doped with $5\%$ of (4-(dicyanomethylene)-2-i-propyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran) (DCJTI) and investigated the driving and modulation characteristics for applying to the electro-optical conversion device. To improve the driving characteristics of red OLEDs, 3 V of offset voltage, which is equal to the turn on voltage, Is applied to the device. Offset voltage enhanced the optical EL output and reduced the rise time of EL waveforms of red OLEDs, and hence the cutoff frequency is increased with increasing applied voltage. The optical pulse of 100 MHz has been obtained from red OLEDs. Therefore, we confirmed that the red OLEDs can be applied to the fields of optical communication as an electro-optical conversion device.

ITO 표면의 SAM형 습식 개질에 의한 유기 발광 소자의 특성 변화 (Property change of organic light-emitting diodes due to a SAM treatment of the ITO surface)

  • 나수환;주현우;안희철;김태완;송민종;이호식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.314-315
    • /
    • 2008
  • We have studied a property change of organic light-emitting diodes (OLED)s due to a surface reformation of indium-tin-oxide(ITO) substrate. An ITO is widely used as a transparent electrode in light-emitting diodes, and the OLEDs device performance is sensitive to the surface properties of the ITO. The ITO surface reformation could reduce the Schottky barrier at the ITO/organic interface and increase the adhesion of the organic layer onto the electrode. We have studied the characteristics of OLEDs with a treatment by a wet processing of the ITO substrate. The self-assembled monolayer(SAM) was used for wet processing. The characteristics of OLEDs were improved by SAM treatment of an ITO in this work. The OLEDs with a structure of ITO/TPD(50nm)/$Alq_3$(70nm)/LiF(0.5nm)/Al(100nm) were fabricated, and the surface properties of ITO were investigated by using seneral characterization techniques. Self-assembled monolayer introduced at the anode/organic interface gave an improvement in turn-on voltage, luminance and external quantum efficiency compared to the device without the SAM layer. SAM-treatment time of the ITO substrate was made to be 0/10/15/20/25min. The current efficiency of the device with 15min. treated SAM layer was increased by 3 times and the external quantum efficiency by 2.6 times.

  • PDF

Three White Organic Light-emitting Diodes with Blue-green Fluorescent and Red Phosphorescent Dyes

  • Galbadrakha, Ragchaa;Bang, Hwan-Seok;Baek, Heume-Il;Lee, Chang-Hee
    • Journal of Information Display
    • /
    • 제9권3호
    • /
    • pp.23-27
    • /
    • 2008
  • This paper reports that well-balanced white emission with three primary colors can be achieved with a simple white organic light-emitting diode (WOLED) structure of ITO / $\alpha$-NPD (50 nm) / $\alpha$-NPD: Btp2Ir(acac) (8 wt%, 6 nm) / $\alpha$-NPD (5 nm) / BCP (3 nm) / $Alq_3$: C545T (0.5 wt%, 10 nm) / $Alq_3$ (40 nm) / LiF (0.5 nm) / Al (100 nm). The external quantum efficiency of the device reached 3.8% at a current density (luminance) of 4.6 mA/$cm^2$ (310 cd/$m^2$), and the maximal luminance of the device reached 19,000 cd/$m^2$ at 11.5 V. The insignificant blue shift of the emitting color with an increasing current density can be attributed to the narrowing of the exciton formation zone width.

Cz-TPD를 음극접합층으로한 OELD의 발광특성 (Emission Properties of the OELD with Cathode Interface Layer for Cz-TPD)

  • 최완지;조민정;박철현;이정구;임기조;박수길;김현후
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.109-111
    • /
    • 2001
  • In this study, The cathode interface layer (CIL) was investigated using aromatic diamine derivatives. Cz-TPD (4,4'-biscarbazolyl (9)-biphenyl) used in the cathode interface layers is investigated emition charcaracteristics at the green organic electroluminescent devices TPD (N.N'-dyphenyl-N-N'-bis(3-methy phenyl)-1.1'-biphenyl-4.4'-diamine) as the hole transformer layer and $Alq_3$:tris (8-hydroxyquinoline) aluminium) as the electron transport layer and emiting layer maded use of the organic electroluminescent device. The Organic Electroluminescent Device with Ag, cathode and CIL of Cz-TPD(4,4'-biscarbazolyl(9)-biphenyl) showed good EL characteristics compare to a conventional Mg:Ag device and also an improved storage stability.[1] As the change in MgAg, Cz-TPD/Ag, Ag at the chthode, the electron and optical charcaracteriseics were investigated.

  • PDF