• Title/Summary/Keyword: Organic clay

Search Result 550, Processing Time 0.028 seconds

Spatial Variation Analysis of Soil Characteristics and Crop Growth across the Land-partitioned Boundary II. Spatial Variation of Soil Chemical Properties (구획경계선(區劃境界線)의 횡단면(橫斷面)에 따른 토양특성(土壤特性)과 작물생육(作物生育)에 관한 공간변이성(空間變異性) 분석연구 II. 토양(土壤) 화학성(化學性)의 공간변이성(空間變異性))

  • Park, Moo-Eon;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.4
    • /
    • pp.257-264
    • /
    • 1989
  • In order to study spatial variability of soil chemical properties across the land-partitioned boundary on Hwadong silt clay loam soil (Fine clayey, mixed, mesic family of Aquic Hapludalfs) in the experimental fie ld of the wheat and Barley Research Institute in Suwon, all measured data were analyzed by means of kriging, fractile diagram, smooth frequency distribution, and autocorrelation. Sampling for soil chemical property analysis was made at 225 intersections of 15x 15 grid with 10m interval from three soil depths (0-10cm, 25-35cm, 50-60cm) in the seven patitioned fields. 1. The coefficient of variance (CV) of various chemical properties varied from 5.4 to 72.7%. Soil pH was classified into the low variation group with CV smaller than 10%, while the other chemical properties belonged to the medium variation group with C.V. between 10 and 100% 2. The approximate number of soil samples for the determination of various chemical properties with error smaller than 10% were two for pH, ten for CEC, 15 for exchangeable Ca, 32 for total nitrogen content, 39 for exchangeable Mg, 40 for exchangeable K, 61 for exchangeable Na, 82 for organic matter content, 212 for available phosphate,. 3. Smooth frequency distribution and fractile diagram showed that available phosphate was in log-normal distribution while others were in normal distribution. 4. Serial correlation analysis revaled that the soil chemical properties had spatial dependence between two nearest neighbouring grid points. Autocorrelation analysis of chemcial properties measured between the serial grid points in the direction of south to north following land-partitioned boundary showed that the zone of influence showing stationarity ranged from 20 to 50m. In the direction of east to west accross land-partitioned boundary, the autocorrelogram of many chemical properies showed peaks with the periodic interval of 30m, which were similar to the partitioned land width. This reveals that the land-partitioned boundary causes soil variability.

  • PDF

Classifications by Materials and Physical Characteristics for Neolithic Pottery from Jungsandong Site in Yeongjong Island, Korea (영종도 중산동 신석기시대 토기의 재료학적 분류와 물리적 특성)

  • Kim, Ran Hee;Lee, Chan Hee;Shin, Sook Chung
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.4
    • /
    • pp.122-147
    • /
    • 2017
  • The Jungsandong sites are distributed across quartz and mica schist formations in Precambrian, and weathering layers include large amounts of non-plastic minerals such as mica, quartz, felspar, amphibole, chlorite and so on, which form the ground of the site. Neolithic pottery from Jungsandong exhibits various brown colors, and black core is developed along the inner part for some samples, and sharp comb-pattern and hand pressure marks can be observed. Their non-plastic particles have various composition, size distribution, sorting and roundness, so they are classified into four types by their characteristic mineral compositions. I-type (feldspar pottery) is including feldspar as the pain component or mica and quartz. II-type (mica pottery) is the combination of chloritized mica, talc, tremolite and diopside. III-type (talc pottery) is with a very small amount of quartz and mica. IV-type (asbestos pottery) is containing tremolite and a very small amount of talc. The inner and outer colors of Jungsandong pottery are somewhat heterogeneous. I-type pottery group shows differences in red and yellow degree, depending on the content of feldspar, and is similar to III-type pottery. II-type is similar to IV-type, because its red degree is somewhat high. The soil of the site is higher in red and yellow degree than pottery from it. The magnetic susceptibility has very wide range of 0.088 to 7.360(${\times}10^{-3}$ SI unit), but is differentiated according to minerals, main components in each type. The ranges of bulk density and absorption ratio of pottery seem to be 1.6 to 1.7 and 13.1 to 26.0%, respectively. Each type of pottery shows distinct section difference, as porosity and absorption ratio increase in the order as follows: I-type (organic matter fixed sample) < III-type and IV-type < I-type < II-type (including IV-type of IJP-15). The reason is that differences in physical property occur according to kind and size of non-plastic particles. Although Jungsandong pottery consists of mixtures of various materials, the site pottery has a geological condition on which all mineral composition of Jungsandong pottery can be provided. There, it is thought that raw materials can be supplied from weathered zone of quartz and mica schist, around the site. However, different constituent minerals, size and rock fragments are shown, suggesting the possibility that there can be more raw material pits. Thus, it is estimated that there may be difference in clay and weathering degree.

Growth and Useful Component of Angelica gigas Nakai under High Temperature Stress (고온 스트레스에 따른 참당귀의 생육 및 유용성분 특성)

  • Jeong, Dae Hui;Kim, Ki Yoon;Park, Sung Hyuk;Jung, Chung Ryul;Jeon, Kwon Seok;Park, Hong Woo
    • Korean Journal of Plant Resources
    • /
    • v.34 no.4
    • /
    • pp.287-296
    • /
    • 2021
  • Recently, the pace of global climate change has tremendously increased, causing extreme damage to crop production. Here, we aimed to examine the growth characteristics and useful components of Angelica gigas under extreme heat stress, providing fundamental data for its efficient cultivation. Plants were exposed to various experimental temperatures (28℃, 34℃, and 40℃), and their growth characteristics and content of useful components were analyzed. At the experimental site, the ambient and soil temperature were 19.38℃ and 21.34℃, ambient and soil humidity were 81.3 % and 0.18 m3/m3, solar radiation was 162.05 W/m2. Moreover, the soil was sandy-clay-loam (pH 6.65), with 2.66% organic matter, 868.52 mg/kg soil available phosphate, and 0.14% nitrogen. Values of most growth characteristics, including the survival rate (85%), plant height (38.66cm), and fresh and dry weight (41.3 g and 14.24 g), were the highest at 28℃. Although the highest content of useful components was observed at 34℃ (3.24%), there were no significant differences across temperatures. Growth characteristics varied across temperatures due to detrimental effects of heat stress, such as accelerated tissue aging, reduced photosynthesis, and delay of growth. Similar content of useful components across temperatures may be due to poor accumulation of anabolic products caused by impaired growth at extremely high temperatures.

Spatio-temporal Characteristics of Macrobenthic Community in the Coastal area of South Korea (우리나라 연안 대형저서동물 시·공간 군집 특성 분석)

  • KIM, Young-Jun;IM, Jung-Ho;CHO, Chun-Ok;RYU, Jong-Seong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.3
    • /
    • pp.100-117
    • /
    • 2022
  • This study examines the spatio-temporal characteristics of the macrobenthic community in the coastal areas of South Korea for the past six years(2015-2020). The relationship between the number of individuals of macrobenthic species and the benthic environments were investigated using data collected at a total of 154 stations located in the West (70), the South (61), and the East Seas (23), except for the Jeju Sea. We examined the benthic environmental characteristics such as water depth, sediment, grain size, ignition loss, and total organic carbon. A total of 1,614 macrobenthic species were found in the coastal area, with a mean density of 0.62 ind./m2 by station. The mean density was relatively high in the spring and summer seasons (May to August) with more than 450 species. The most dominant species belong to Polychaetes and the top five of them accounted for more than 20% of the total number of populations. The top five species were Heteromastus filiformis, Scoletoma longifolia, Sigambra tentaculata, Sternaspis scutata, and Notomastus latericeus. Cluster analysis was performed on the top five dominant species. The stations were clustered into three groups with similar locations on the West, South, and East Sea. Cluster 1 and 3 represent Heteromastus filiformis (44% each), but cluster 2 represents Scoletoma longifolia (66%). Each cluster has different benthic environmental characteristics, especially in the sediment's sand (31.0%, 51.9%) and clay (15.9%, 9.7%) contents.

An Empirical Study on the Improvement of In Situ Soil Remediation Using Plasma Blasting, Pneumatic Fracturing and Vacuum Suction (플라즈마 블라스팅, 공압파쇄, 진공추출이 활용된 지중 토양정화공법의 정화 개선 효과에 대한 실증연구)

  • Jae-Yong Song;Geun-Chun Lee;Cha-Won Kang;Eun-Sup Kim;Hyun-Shic Jang;Bo-An Jang;Yu-Chul Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.85-103
    • /
    • 2023
  • The in-situ remediation of a solidified stratum containing a large amount of fine-texture material like clay or organic matter in contaminated soil faces limitations such as increased remediation cost resulting from decreased purification efficiency. Even if the soil conditions are good, remediation generally requires a long time to complete because of non-uniform soil properties and low permeability. This study assessed the remediation effect and evaluated the field applicability of a methodology that combines pneumatic fracturing, vacuum extraction, and plasma blasting (the PPV method) to improve the limitations facing existing underground remediation methods. For comparison, underground remediation was performed over 80 days using the experimental PPV method and chemical oxidation (the control method). The control group showed no decrease in the degree of contamination due to the poor delivery of the soil remediation agent, whereas the PPV method clearly reduced the degree of contamination during the remediation period. Remediation effect, as assessed by the reduction of the highest TPH (Total Petroleum Hydrocarbons) concentration by distance from the injection well, was uncleared in the control group, whereas the PPV method showed a remediation effect of 62.6% within a 1 m radius of the injection well radius, 90.1% within 1.1~2.0 m, and 92.1% within 2.1~3.0 m. When evaluating the remediation efficiency by considering the average rate of TPH concentration reduction by distance from the injection well, the control group was not clear; in contrast, the PPV method showed 53.6% remediation effect within 1 m of the injection well, 82.4% within 1.1~2.0 m, and 68.7% within 2.1~3.0 m. Both ways of considering purification efficiency (based on changes in TPH maximum and average contamination concentration) found the PPV method to increase the remediation effect by 149.0~184.8% compared with the control group; its average increase in remediation effect was ~167%. The time taken to reduce contamination by 80% of the initial concentration was evaluated by deriving a correlation equation through analysis of the TPH concentration: the PPV method could reduce the purification time by 184.4% compared with chemical oxidation. However, the present evaluation of a single site cannot be equally applied to all strata, so additional research is necessary to explore more clearly the proposed method's effect.

Changes in Soil Physiochemcial Properties Over 11 Years in Larix kaempferi Stands Planted in Larix kaempferi and Pinus rigida Clear-Cut Sites (낙엽송과 리기다소나무 벌채지에 조성된 낙엽송 임분의 11년간 토양 물리·화학적 특성 변화)

  • Nam Jin Noh;Seung-hyun Han;Sang-tae Lee;Min Seok Cho
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.502-514
    • /
    • 2023
  • This study was conducted to understand the long-term changes in soil physiochemical properties and seedling growth in Larix kaempferi (larch) stands planted in clear-cut larch and Pinus rigida (pine) forest soils over an 11-year period after reforestation. Two-year-old bare-root larch seedlings were planted in 2009-2010 at a density of 3,000 seedlings ha-1 in clear-cut areas that harvested larch (Chuncheon and Gimcheon) and pine (Wonju and Gapyeong) stands. We analyzed the physiochemical properties of the mineral soils sampled at 0-20 cm soil depths in the planting year, and the 3rd, 7thand 11th years after planting, and we measured seedling height and root collar diameter in those years. We found significant differences in soil silt and clay content, total carbon and nitrogen concentration, available phosphorus, and cation exchangeable capacity between the two stands; however, seedling growth did not differ. The mineral soil was more fertile in Gimcheon than in the other plantations, while early seedling growth was greatest in Gapyeong. The seedling height and diameter at 11 years after planting were largest in Wonju (1,028 tree ha-1) and Chuncheon (1,359 tree ha-1) due to decreases in stand density after tending the young trees. The soil properties in all plantations were similar 11 years after larch planting. In particular, the high sand content and high available phosphorus levels (caused by soil disturbance during clear-cutting and planting) showed marked decreases, potentially due to soil organic matter input and nutrient uptake, respectively. Thus, early reforestation after clear-cutting could limit nutrient leaching and contribute to soil stabilization. These results provide useful information for nutrient management of larch plantations.

Characteristics and classification of paddy soils on the Gimje-Mangyeong plains (김제만경평야(金堤萬頃平野)의 답토양특성(沓土壤特性)과 그 분류(分類)에 관(關)한 연구(硏究))

  • Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.5 no.2
    • /
    • pp.1-38
    • /
    • 1972
  • This study, designed to establish a classification system of paddy soils and suitability groups on productivity and management of paddy land based on soil characteristics, has been made for the paddy soils on the Gimje-Mangyeong plains. The morphological, physical and chemical properties of the 15 paddy soil series found on these plains are briefly as follows: Ten soil series (Baeggu, Bongnam, Buyong, Gimje, Gongdeog, Honam, Jeonbug, Jisan, Mangyeong and Suam) have a B horizon (cambic B), two soil series (Geugrag and Hwadong) have a Bt horizon (argillic B), and three soil series (Gwanghwal, Hwagye and Sindab) have no B or Bt horizons. Uniquely, both the Bongnam and Gongdeog series contain a muck layer in the lower part of subsoil. Four soil series (Baeggu, Gongdeog, Gwanghwal and Sindab) generally are bluish gray and dark gray, and eight soil series (Bongnam, Buyong, Gimje, Honam, Jeonbug, Jisan, Mangyeong and Suam) are either gray or grayish brown. Three soil series (Geugrag, Hwadong and Hwagye), however, are partially gleyed in the surface and subsurface, but have a yellowish brown to brown subsoil or substrata. Seven soil series (Bongnam, Buyong, Geugrag, Gimje, Gongdeog, Honam and Hwadong) are of fine clayey texture, three soil series (Baeggu, Jeonbug and Jisan) belong to fine loamy and fine silty, three soil series (Gwanghwal, Mangyeong and Suam) to coarse loamy and coarse silty, and two soil series (Hwagye and Sindab) to sandy and sandy skeletal texture classes. The carbon content of the surface soil ranges from 0.29 to 2.18 percent, mostly 1.0 to 2.0 percent. The total nitrogen content of the surface soil ranges from 0.03 to 0.25 percent, showing a tendency to decrease irregularly with depth. The C/N ratio in the surface soil ranges from 4.6 to 15.5, dominantly from 8 to 10. The C/N ratio in the subsoil and substrata, however, has a wide range from 3.0 to 20.25. The soil reaction ranges from 4.5 to 8.0. All soil series except the Gwanghwal and Mangyeong series belong to the acid reaction class. The cation exchange cpacity in the surface soil ranges from 5 to 13 milliequivalents per 100 grams of soil, and in all the subsoil and substrata except those of a sandy texture, from 10 to 20 milliequivalents per 100 grams of soil. The base saturation of the soil series except Baeggu and Gongdeog is more than 60 percent. The active iron content of the surface soil ranges from 0.45 to 1.81 ppm, easily-reduceable manganese from 15 to 148 ppm, and available silica from 36 to 366 ppm. The iron and manganese are generally accumulated in a similar position (10 to 70cm. depth), and silica occurs in the same horizon with that of iron and manganese, or in the deeper horizons in the soil profile. The properties of each soil series extending from the sea shore towards the continental plains change with distance and they are related with distance (x) as follows: y(surface soil, clay content) = $$-0.2491x^2+6.0388x-1.1251$$ y(subsoil or subsurface soil, clay content) = $$-0.31646x^2+7.84818x-2.50008$$ y(surface soil, organic carbon content) = $$-0.0089x^2+0.2192x+0.1366$$ y(subsoil or subsurface soil, pH) = $$-0.0178x^2-0.04534x+8.3531$$ Soil profile development, soil color, depositional and organic layers, soil texture and soil reaction etc. are thought to be the major items that should be considered in a paddy soil classification. It was found that most of the soils belonging to the moderately well, somewhat poorly and poorly drained fine and medium textured soils and moderately deep fine textured soils over coarse materials, produce higher paddy yields in excess of 3,750 kg/ha. and most of the soils belonging to the coarse textured soils, well drained fine textured soils, moderately deep medium textured soils over coarse materials and saline soils, produce yields less than 3,750kg/ha. Soil texture of the profile, available soil depth, salinity and gleying of the surface and subsurface soils etc. seem to be the major factors determining rice yields, and these factors are considered when establishing suitability groups for paddy land. The great group, group, subgroup, family and series are proposed for the classification categories of paddy soils. The soil series is the basic category of the classification. The argillic horizon (Bt horizon) and cambic horizon (B horizon) are proposed as two diagnostic horizons of great group level for the determination of the morphological properties of soils in the classification. The specific soil characteristics considered in the group and subgroup levels are soil color of the profile (bluish gray, gray or yellowish brown), salinity (salic), depositonal (fluvic) and muck layers (mucky), and gleying of surface and subsurface soils (gleyic). The family levels are classified on the basis of soil reaction, soil texture and gravel content of the profile. The definitions are given on each classification category, diagnostic horizons and specific soil characteristics respectively. The soils on these plains are classified in eight subgroups and examined under the existing classification system. Further, the suitability group, can be divided into two major categories, suitability class and subclass. The soils within a suitability class are similar in potential productivity and limitation on use and management. Class 1 through 4 are distinguished from each other by combination of soil characteristics. Subclasses are divided from classes that have the same kind of dominant limitations such as slope(e), wettness(w), sandy(s), gravels(g), salinity(t) and non-gleying of the surface and subsurface soils(n). The above suitability classes and subclasses are examined, and the definitions are given. Seven subclasses are found on these plains for paddy soils. The classification and suitability group of 15 paddy soil series on the Gimje-Mangyeong plains may now be tabulated as follows.

  • PDF

Studies on the Estimation of K2O Requirement for rice through the Chemical Test Data of Paddy Top Soil (화학분석(化學分析)을 통(通)한 수도(水稻)의 가리적량(加里適量) 추정(推定)에 관한 연구(硏究))

  • Kim, Moon Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.1
    • /
    • pp.61-100
    • /
    • 1975
  • This study has been made to find out the possibilty of successfully using the following $K_2O$ recommended equation $K_2O\;kg/10a=(Ko/\sqrt{Ca+Mg}-Ks/\sqrt{Ca+Mg})sqrt{Ca+Mg}.\;47.\;B\;D$. where $Ko/sqrt{Ca+Mg}=0.03518+0.0007658\;Sio_2/O.M$. $K_Ssqrt{Ca+Mg}$=Exchangeable K me/100g/$\sqrt{Total\;soluble(Ca+Mg)me/100g\;in\;Soil}$ B. D. =Bulk density of top soil, when the dose of Nitrogen for rice is estimated from the following equation: $N\;kg/10a=(4.2+0.096\;SiO_2/O.M).F$ where $F=0.907+0.263x-0.013x^2$ $SiO_2/O.M=(available\;SiO_2=ppm)/(organic\;matter\;%)$in soil For this. two field experiments. one in sandy and the other in clay paddy soil. have been conducted using 3 levels of wollastonite (0, 500, 100kg/10a) as main treatments; 3 levels of $K_2O$ application were used as sub-plots. These were as follows : (1) 8kg of $K_2O$/10a regardless of the K activity-$K/\sqrt{Ca+Mg}$; (2) kg of $K_2O$/10a estimated from the above equation. and (3) same as (2) above plus additional 30% of $K_2O$. The dose of N kg/ 10a was determined from the above equation based on the value of $SiO_2$/O.M. ratio in each treatment. There were three replications. The leading variety of rice in Chung Chong Nam Do area. Akibare (introduced from Japan) was used. The data obtained. through soil and plant analysis and growth and yield observations. have been throughly examined to attain the following summarized conclusions. 1. The nitrogen dose. estimated from the above equation. was in excess for optimum growth of the rice variety Akibare; indicating the necessity of modification onthe value of "F" or the constants in the equation. The concept of using $SiO_2$/O.M. in the equation was shown to be applicable. 2. The dose of potash. estimated from the respective equation given above. also was in excess of the rice requirements indicating the necessity of minor change in the estimation of $Ko/\sqrt{Ca+Mg}$ value and some great modification in the calculation of $Ks/\sqrt{Ca+Mg}$ value for the equation; however the concept of using $K/\sqrt{Ca+Mg}$ as a basis of $K_2O$ recommendation was shown to be quite reasonable. 3. It was found. from the correlation study using the data of paddy yield and amount of $K_2O$ absorbed by rice plants that the substitution of the value of $Ks/\sqrt{Ca+Mg}$ in the equation for the vaule $Ks/\sqrt{Ca+Mg}=0.037+0.78K\;me/100g$ soil was much more applicable than using the value calculated from the data of soil and wollastonite analysis.

  • PDF

Nature of Suppressiveness and Conduciveness of Some plant pathogens in Soils (토양내(土壤內) 식물(植物) 병원균(病原菌)의 발병억제(發病抑制) 및 유발성질(誘發性質))

  • Shim, Jae-Ouk;Lee, Min-Woong
    • The Korean Journal of Mycology
    • /
    • v.18 no.3
    • /
    • pp.164-177
    • /
    • 1990
  • This study was carried out to obtain some useful data for increasing an effective ginseng production. There was a direct relationship (r=0.2645) between spore germination of Fusarium solani and soil pH, and (r=0.315) between Cylindrocarpon destructans and soil pH. On the other hand, there was a direct relationship (r=0.19) between relative hyphal growth of Rhizoctonia solani and soil pH. There was a direct relationship (r=0.21) between number of total bacteria and F. solani, (r=0.37) between actinomycetes and F. solani and (r=0.20) between celluloytic bacteria and F. solani. However, there was an inverse relationship (r=-0.20) between number of total fungi and F. solani. There was a direct relationship (r=0.24) between number of actinomycetes and R. solani. Each ginseng pathogen-suppressive soil screened was 40 in F. solani, 20 in C. destructans and 9 soil samples in R. solani among 146 soil samples, respectively. The mean contents of K, Ca and Mg were fairly lower in each ginseng pathogen-suppressive soil than conducive soil, whereas Na were somewhat lower. The mean contents of organic matter were over 2 times higher in each ginseng pathogen-suppressive soil than conducive soil. The mean contents of phosphate were fairly lower in F. solani and R. solani-suppressive soil than conducive soil and, on the other hand, were somewhat higher in C. destructans-suppressive soil than conducive soil. The mean soil pH was somewhat lower in each ginseng pathogen-suppressive soil than conducive soil. The mean contents of sand were about 2 times higher in each ginseng pathogen­suppressive soil than conducive soil, whereas silt and clay were somewhat lower. The microbial numbers of total bacteria, total fungi and celluloytic fungi were higher in F. solani-suppressive soil than conducive soil, whereas actinomycetes and celluloytic bacteria were lower. Each microbial number of total bacteria or total fungi indicated a significant difference (p=0.05) between F. solani­suppressive and conducive soil, and the microbial number of actinomycetes was a highly significant difference (p=0.01) between F. solani-suppressive and conducive soil. The microbial numbers of total bacteria, total fungi, actinomycetes and celluloytic fungi were higher in C. destructans-suppressive soil than conducive soil, whereas celluloytic bacteria were about 2 times lower. On the other hand, the microbial numbers of total fungi were higher in R. solani-suppressive soil than conducive soil, whereas total bacteria, actinomycetes, celluloytic bacteria and celluloytic fungi were lower. Fourteen of 16 F. solani-suppressive soils tested were suppressive to ginseng root rot, whereas fifteen of 16 C. destructans-suppressive soils were suppressive. Ginseng root rots of ginseng disease-suppressive soils were in the range of 1.0-17.4% in F. solani-suppressive soil and 0.2-20.4% in C. destructans-suppressive soil, respectively.

  • PDF

Studies on agronomic characters of rice and soil textures in Akiochi paddy field (추락도(秋落稻)의 형태적(形態的) 특성(特性) 및 추락답토양(秋落畓土壤)에 관(關)한 연구(硏究))

  • Cho, Baik-Hyun;Lee, C.Y.;Lee, E.W.
    • Applied Biological Chemistry
    • /
    • v.6
    • /
    • pp.61-77
    • /
    • 1965
  • In this experiment, Akiochi was studied especially on plant growth on the degraded soils. Besides, such soils were carefully examined on its character and plant body was analysed to know the difference in various mineral contents. For this purpose, paddy cultivation was done with the variety Pal Dal at Suwon, Sosa and Pyungtak. Three plots were chosen at each location as the normal and 2 levels of akiochi, a-the stronger and b-the weaker. Harvests from these 9 plots were measured agronomically and also chemically analysised. As for soil, after an observation on vertical section of soil, samples from each layer were also studied both physically and chemically. The results are summarized as follows. 1. Outer changes in rice plant and changes in yield components. 1) Rice from Akiochi soil showed remarkably shortened culm length, head length, protrusoion length, blade length of boot leaf, and coleoptile length, compared with that from the normal paddy field. 2) There was a tendency for Akiochi rice to have more heads per plant. 3) Akiochi rice showed poorer intercalary growth of upper 3 internodes. The ratio of this upper internode length to total culm length was also smaller in this case. Consquently the ratio of lower internode length to total culm length became larger than that from normal peddy field. 4) Akiochi rice showed significantly fewer first spikelets and attached grains of head at main stem. 5) Maturing rate of both this main seem of whole plant body was remarkably lower than that of normal rice. 6) Akiochi rice showed lower head weight of main stem, total hulled rice weight, total grain yield, 1000-grain weight, straw weight and straw-hulled rice ratio. 2. Physical and chemical study on soil. 1) Akiochi soil showed thinner upper layer and total thickness of upper and lower parts was smaller than that of normal. 2) Akiochi soil of Suwon was mainly composed of sand, while that of Sosa and Pyungtak was composed of heavy clay. 3) Chemical analysis indicated that content of $SiO_2$ in upper layer is always lower than that of normal. But no other common tendencies were found. 4) This analysis further lillustrates lower content of Fe, & Mn at Suwon ; of Mn at Sosa and higher content of Fe at Sosa and organic matters at Pyungtak. 5) Some differences in the content of N in each plot could be marked though irregular. 3. Chemical Composition of plant body. 1) Chemical analysis on grain, boot leaf and straw did not suggest any remarkable differences between normal and Akiochi rice, except that the latter contains less Si in boot leaf and less Mn in straw. 2) Contents of each chemical element were measured in grain and straw to calculate the percentage of element content in grain to that of whole plant body including both grain and straw. Here, Akiochi rice always showed lower value in N, K and Mn. 4. Relationship between chemical composition of plant body and that of soil. Akiochi soil at Sosa marked lower content of Mn. This caused another lower content of this element in grain, boot leaf and straw. But except that, no remarkable relationship could be found in this study.

  • PDF