• Title/Summary/Keyword: Organic chelating agents

Search Result 15, Processing Time 0.03 seconds

Contrast Effect of Citric Acid and Ethylenediaminetetraacetic Acid on Cadmium Extractability in Arable Soil

  • Lee, Hyun Ho;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.634-640
    • /
    • 2015
  • Chelating agents have been proposed to improve the efficiency of phytoextraction of heavy metal hyperaccumulator. However, little studies to elucidate mechanism of chelating agents to increase cadmium (Cd) extractability have been conducted. The objectives of this study were to evaluate effect of different chelating agents on Cd extractability and to determine mechanism of Cd mobilization affected by these agents. An arable soil was spiked with inorganic Cd ($CdCl_2$) to give a total Cd concentration of $20mgCdkg^{-1}$. Ethylenediaminetetraacetic acid (EDTA) and citric acid (CA) were selected and mixed with the arable soil at the rates of 0 and $5mmolkg^{-1}$. The mixture soils were incubated at $25^{\circ}C$ for 4 weeks in dark condition. Concentration of F1 Cd fractions (water soluble) significantly increased with addition of EDTA but did not changed with addition of CA. Especially; concentration of F5 Cd fractions (residual) significantly increased with addition of CA. Increase in water soluble with EDTA might be attributed to complexation of Cd and EDTA. Dissolved organic carbon concentration significantly increased with EDTA addition, but did not with CA implying that considerable amount of CA was decomposed to inorganic carbon by microorganism. Log activity of carbonate ($CO_3{^{2-}}$) which might be generated from CA increased with addition of CA. Increase in residual Cd fraction might be due to precipitation of Cd as $CdCO_3$. As a result, EDTA was effective in increasing Cd extractability, by contrast CA had significant effect in reducing Cd extractability.

Highly CO2-soluble 5-Amido-8-hydroxyquinoline Chelating Agents for Extraction of Metals in Sc-CO2

  • Chang, Fei;Park, Seo-Hun;Kim, Hakwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1327-1331
    • /
    • 2008
  • Novel $CO_2$-soluble 8-hydroxyquinoline (8-HQ) chelating agents were synthesized and evaluated for solubility and metal ion extraction ability in supercritical $CO_2\;(Sc-CO_2)$. Among them, secondary amide-containing 8- HQ derivatives cannot be dispersed well into Sc-$CO_2$, but tertiary amide-containing derivatives can dissolve completely in Sc-$CO_2$ even at low CO2 pressures, perhaps owing to the predominant intermolecular interaction between the chelating agent and the $CO_2$ molecule. Based on 8-HQ chelating agent solubility data, we investigated the extraction of metal ions ($Co^{2+}$, $Cu^{2+}$, $Sr^{2+}$, $Cd^{2+}$, and $Zn^{2+}$) using two highly $CO_2$-soluble 8-HQ derivatives (4d, 4e) in Sc-$CO_2$. The extraction efficiency of tertiary amide-containing 8-HQ ligands, both fluorinated and non-fluorinated forms, was dramatically increased in the presence of diethyl amine (organic base). We suggest that diethyl amine could play an important synergistic role in the stronger metal binding ability of 8-HQ through an in situ deprotonation reaction in Sc-$CO_2$ medium.

Asymmetric Reduction of 3-Ketoproline Ethyl Ester by Modified Borohydrides and Various Vegetables

  • Wibowo, Agustono;Shaameri, Zurina;Mohammat, Mohd Fazli;Hamzah, Ahmad Sazali
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.5
    • /
    • pp.244-250
    • /
    • 2017
  • Reduction of (${\pm}$)-3-ketoproline ethyl ester (1) by $NaBH_4$ in the presence of $CaCl_2$ and $MgCl_2$ as the chelating agents gave selective products cis-3(R/S)-alcohols, while reduction by $NaBH_4$ alone or chelated with $NiCl_2$ and $AlBr_3$ gave mixtures of cis- and trans-alcohols. The reduction of (${\pm}$)-1 by various vegetables however, gave exclusively the cis-alcohol as the major and trans-alcohol as the minor. On the contrary, reduction of (${\pm}$)-1 by carrot afforded a mixture of cis- and trans-alcohols, in which the trans-alcohol exists as the major product. In addition, we found that this biocatalyst selectively converted S-enantiomer of (${\pm}$)-1 to the cis-alcohol, and R-enantiomer to a mixture of cis- and trans-alcohols with cis-alcohol as the major product. This fact prompted us to use various fresh plant tissues for stereoselective reduction of diverse types of pyrrolidinones, as its stereoselectivity towards racemic mixtures is higher compared to that using chemical reducing agents.

BTEX-contaminated Groundwater Remediation with Modified Fenton Reaction using Environmental Friendly Chelating Agent (친환경 착제가 적용된 modified Fenton 공정을 이용한 BTEX로 오염된 지하수의 복원)

  • Kwon, Yong-Jae;Jo, Young-Hoon;Jung, Jae-Gu;Kong, Sung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.638-646
    • /
    • 2014
  • The effect of in-organic chelating agents with Fe(II) and Fe(III) in modified Fenton was evaluated to degradation BTEX (benzene, toluene, ethylbenzene, xylene). Citric acid and pyrophosphate were used in experimentals and an optimum chelating agent for BTEX degradation was determined. In $H_2O_2$/Fe(III)/citric acid, degradation of BTEX was decreased when concentration of citric acid was increased. In $H_2O_2$/Fe(III)/pyrophosphate, degradation of BTEX was increased when concentration of pyrophosphate was increased and degradation for BTEX was relatively high compared with $H_2O_2$/Fe(III)/citric acid. In $H_2O_2$/Fe(II)/chelating agents, degradation for BTEX was high and pH variation was minimized when molar ratio of Fe(II) and citric acid was 1:1. Optimum molar concentration of Fe(II), citric acid and $H_2O_2$ were 7 mM, 7mM and 500 mM for degradation of 100 mg/L of benzene to obtain best efficiency of $H_2O_2$, least precipitation of iron and best degradation.

Effects of Organic Materials on Soil Chemical Properties (유기물(有機物)의 시용(施用)이 토양(土壤)의 화학적(化學的) 성질(性質)에 미치는 영향(影響))

  • Oh, Wang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.3
    • /
    • pp.161-174
    • /
    • 1979
  • A review was made on the effect of organic matter application on the chemical characteristics of soils such as pH, solubilities of minerals, and cation exchange capacity mainly at flooded rice soils. The review can be summarized as follows: 1. Application of organic material such as rice straw and compost in flooded rice soil leads to a temporary lowering of soil pH at the earlier stage of soil reduction, due to the production of various organic acids and carbonic acid. This temporary lowered pH is replaced with the production of alkaline substances such as ammonia as the reduction of soil proceeds. 2. Incorporation of organic materials intensifies the ferrous iron, dissolving various minerals, virtually to the increase in electrical conductivity of soils. 3. Organic materials also play an important role in dissolving soil minerals through the production of various chelating agents. 4. Application of soil organic matter significantly increases cation exchange capacity of soils. 5. Continuous application of rice straw or compost leads to the increase in soil organic matter content to some extent, up to the level of equilibrium. In soils low in organic matter the equilibrium level is attained with five years continuous application of compost. 6. The manner of chemical fertilizer application influences the accumulation of organic matter applied in soils. Low levels of fertilization lowers the accumulation while high levels of fertilization accerelates the accumulation.

  • PDF

Effect of chelating agent and organic acid on strontium distribution in Wistar rats (착화제와 유기산이 Wistar rat체내의 Sr 분포에 미치는 영향)

  • Lee, Kee-Ho;Lee, Je-Ho;Park, Sang-Yoon;Lee, Seung-Hoon;Ryu, Yong-Wun;Yun, Taik-Koo
    • Journal of Radiation Protection and Research
    • /
    • v.15 no.2
    • /
    • pp.41-49
    • /
    • 1990
  • $^{88}SrCl_2$ was injected to the tail vein of Wistar rats and investigated its distribution and clearance in the tissues and blood. We also measured the changes in Sr binding to the blood plasma protein by administrating chelating agents and organic acids. For the blood, 60% of the Sr occurred in the plasma and 40% on the cell membrane. Fifty percent of Sr in the blood plasma was bound to plasma protein. Sr on the cell membrane seemed to be bound loosely. The binding in the lymphocyte was higher than in the erythrocyte .and granulocyte. Within one hour Sr was quickly disappeared from the blood stream, to be accumulated in the bone. Twenty four hours after the injection, Sr decreased rapidly in the organs of soft tissue, but slowly in the bone. The binding of Sr to plasma protien decreased from 57% of the control to 27-33% in the group treated with chelating agents, EDTA, EGTA and DTPA and to 19% and 40% in the groups treated with organic acids, citrate and oxalate, respectively.

  • PDF

Remediation of heavy metal-contaminated soils using eco-friendly nano-scale chelators

  • Lim, Heejun;Park, Sungyoon;Yang, Jun Won;Cho, Wooyoun;Lim, Yejee;Park, Young Goo;Kwon, Dohyeong;Kim, Han S.
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.137-146
    • /
    • 2018
  • Soil washing is one of the most frequently used remediation technologies for heavy metal-contaminated soils. Inorganic and organic acids and chelating agents that can enhance the removal of heavy metals from contaminated soils have been employed as soil washing agents. However, the toxicity, low removal efficiency and high cost of these chemicals limit their use. Given that humic substance (HS) can effectively chelate heavy metals, the development of an eco-friendly, performance-efficient and cost-effective soil washing agent using a nano-scale chelator composed of HS was examined in this study. Copper (Cu) and lead (Pb) were selected as target heavy metals. In soil washing experiments, HS concentration, pH, soil:washing solution ratio and extraction time were evaluated with regard to washing efficiency and the chelation effect. The highest removal rates by soil washing (69% for Cu and 56% for Pb) were achieved at an HS concentration of 1,000 mg/L and soil:washing solution ratio of 1:25. Washing with HS was found to be effective when the pH value was higher than 8, which can be attributed to the increased chelation effect between HS and heavy metals at the high pH range. In contrast, the washing efficiency decreased markedly in the low pH range due to HS precipitation. The chelation capacities for Cu and Pb in the aqueous phase were determined to be 0.547mmol-Cu/g-HS and 0.192mmol-Pb/g-HS, respectively.

Degradation Kinetic and Mechanism of Methyl Tert-butyl Ether (MTBE) by the Modified Photo-Fenton Reaction (Modified Photo-Fenton Reaction을 이용한 Methyl Tert-butyl Ether (MTBE)의 분해 Kinetic 및 메커니즘 규명에 관한 연구)

  • Kim, Min-Kyoung;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.69-75
    • /
    • 2006
  • Improper disposal of petroleum and spills from underground storage tanks have created large areas with highly toxic contamination of the soil and groundwater. Methyl tert-butyl ether (MTBE) is widely used as a fuel additive because of its advantageous properties of increasing the octane value and reducing carbon monoxide and hydrocarbon exhausts. However, MTBE is categorized as a possible human carcinogen. This research investigated the Modified Photo-Fenton system which is based on the Modified Fenton reaction and UV light irradiation. The Modified Fenton reaction is effective for MTBE degradation near a neutral pH, using the ferric ion complex composed of a ferric ion and environmentally friendly organic chelating agents. This research was intended to treat high concentrations of MTBE; thus, 1,000 mg/L MTBE was chosen. The objectives of this research are to find the optimal reaction conditions and to elucidate the kinetic and mechanism of MTBE degradation by the Modified Photo-Fenton reaction. Based on the results of experiments, citrate was chosen among eight chelating agents as the candidate for the Modified Photo-Fenton reaction because it has a relatively higher final pH and MTBE removal efficiency than the others, and it has a relatively low toxicity and is rapidly biodegradable. MTBE degradation was found to follow pseudo-first-order kinetics. Under the optimum conditions, [$Fe^{3+}$] : [Citrate] = 1 mM: 4 mM, 3% $H_2O_2$, 17.4 kWh/L UV dose, and initial pH 6.0, the 1000 ppm MTBE was degraded by 86.75% within 6 hours and 99.99% within 16 hours. The final pH value was 6.02. The degradation mechanism of MTBE by the Modified Photo-Fenton Reaction included two diverse pathways and tert-butyl formate (TBF) was identified to be the major degradation intermediate. Attributed to the high solubility, stability, and reactivity of the ferric-citrate complexes in the near neutral condition, this Modified Photo-Fenton reaction is a promising treatment process for high concentrations of MTBE under or near a neutral pH.

Oxidation of organic contaminants in water by iron-induced oxygen activation: A short review

  • Lee, Changha
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.205-211
    • /
    • 2015
  • Reduced forms of iron, such as zero-valent ion (ZVI) and ferrous ion (Fe[II]), can activate dissolved oxygen in water into reactive oxidants capable of oxidative water treatment. The corrosion of ZVI (or the oxidation of (Fe[II]) forms a hydrogen peroxide ($H_2O_2$) intermediate and the subsequent Fenton reaction generates reactive oxidants such as hydroxyl radical ($^{\bullet}OH$) and ferryl ion (Fe[IV]). However, the production of reactive oxidants is limited by multiple factors that restrict the electron transfer from iron to oxygen or that lead the reaction of $H_2O_2$ to undesired pathways. Several efforts have been made to enhance the production of reactive oxidants by iron-induced oxygen activation, such as the use of iron-chelating agents, electron-shuttles, and surface modification on ZVI. This article reviews the chemistry of oxygen activation by ZVI and Fe(II) and its application in oxidative degradation of organic contaminants. Also discussed are the issues which require further investigation to better understand the chemistry and develop practical environmental technologies.

A Study on Fractionation and Characterization of Water-Soluble Natural Fe-Chelates From Garbage Compost and Activated Sewage Sludge (활성오니(活性汚泥) 및 진개퇴비중(塵芥堆肥中) 수용성(水溶性) 철(鐵) 킬레이트의 분리(分離)와 특성(特性)에 관(關)한 연구(硏究))

  • Park, Nae-Joung;Lindsay, W.L.
    • Applied Biological Chemistry
    • /
    • v.18 no.4
    • /
    • pp.194-202
    • /
    • 1975
  • This study was conducted to study the properties of the water-soluble natural chelating agents from garbage compost and activated sewage sludge responsible for Fe chelation, which is closely associated with the effectiveness in correcting iron chlorosis in plant. The water-soluble fraction of these materials was fractionated by menas of Sephadex gel filtration and the fractions of Fe chehates were traced by radioactive $^{59}Fe$. The fractions were examined by ultraviolet and infrared. spectroscopy and stability constants for Fe. The water-soluble fraction from garbage compost was separated by Sephadex G-25 into approximately four fractions. Most of the added $^{59}Fe$ was associated with fraction I, which appeared at the void volume. Further fractionation by Sephadex G-50 indicated that the molecular weight of water-soluble chelating agents is in the approximate range of 5000 to 10,000. The water-soluble fraction from activated sewage sludge gave six fractions by Sephadex G-25. Most of the added $^{59}Fe$ was found in the fraction I,II, and III, The molecular weights of most chelating agents associated with $^{59}Fe$ appeared to be less than 5,000 and those of fraction I that appeared at the void volume was in the range of 5,000 to 1,000. Discrepancy between radio activity count and UV absorption indicated the heterogeneity of the fractions obtained by Sephadex gel filtration. Ultraviolet absorption spectra of all fractions separated by Sephadex G-25 and containing chelating agents showed no differences. Fraction IV and V of sewage extract showed absorption maxima and shifting similar to nucleic acid components suggesting the presence of decomposition products of nucleic acid. Similarity fraction VI contained phenolic type amino acid groups. Fraction I of compost extract contained most of the added $^{59}Fe$ and showed weak but extra definite absorption in the 1230, and $1270cm^{-1}$ region, suggesting that extra oxygen groups in polyphenolic structure were probably involved in Fe chelation. In sewage extract, fraction I,II, and III in which most of the $^{59}Fe$ was found, showed strong definite polypeptide absorption in the region of $1540cm^{-1}$ due to NH deformation and C-N stretching of amide groups in the peptidebond. These extra functional groups in fraction I, II, and III appeared to be associated with Fe chelation. The other fractions, not associated with $^{59}Fe$, still have carboxyl and hydroxyl groups, suggesting that these functional groups in these water extracts may not independently form the Fe chelates. Precipitation of ferric hydroxide precluded measuring the stability constants for Fe-chelates. However, the formation constants for Zn chelates as log K values for compost extract and sewage extract at pH 4.0 from which the strength of chelation with Fe could be presumed, were 8.23, and 9.75, respectively, indicating strong complexation with metals. The chelating capacity of compost extract containing 6.5 g organic matter per liter was 0.82 mM, and that of sewage extract containing 5.3 g per liter was 0. 64 mM.

  • PDF