• Title/Summary/Keyword: Organic additive

Search Result 268, Processing Time 0.029 seconds

Preparation and Properties of EPDM/Thermoplastic Polyurethane Scrap Blends (EPDM/열가소성 폴리우레탄 스크랩 블렌드의 제조 및 물성)

  • Lee, Young-Hee;Kang, Bo-Kyung;Yoo, Hye-Jin;Kim, Jung-Soo;Jung, Young-Jin;Lee, Dong-Jin;Kim, Han-Do
    • Clean Technology
    • /
    • v.15 no.3
    • /
    • pp.172-179
    • /
    • 2009
  • The thermoplastic polyurethane waste (TPU-S) with good tensile properties, hardness, NBS abrasion resistance, specific gravity and low wet coefficient of kinetic friction was melt-blended with ethylene propylene diene monomer rubber (EPDM) with high wet slip resistance and low mechanical properties to form EPDM/TPU-S blend films, and their composition-property relationship was investigated to find the optimum composition for shoe outsole material. The properties except the wet slip resistance increased with increasing TPU-S contents in the blend. All the properties except elongation at break, specific gravity and the wet coefficient of kinetic friction in the range of $0{\sim}65\;wt%$ of TPU-S did not attain the values predicted by the simple additive rule. The optimum weight ratio of EPDM/TPU-S for the application to the typical shoe outsole material was found to be 30/70.

Effects of Organic Additives on Residual Stress and Surface Roughness of Electroplated Copper for Flexible PCB

  • Kim, Jongsoo;Kim, Heesan
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.154-158
    • /
    • 2007
  • For the application of flexible printed circuit board (FPCB), electroplated copper is required to have low surface roughness and residual stress. In the paper, the effects of surface roughness and residual stress of electroplated copper as thick as $8{\mu}m$ were studied on organic additives such as inhibitor, leveler and accelerator. Polyimide film coated with sputtered copper was used as a substrate. Surface roughness and surface morphology were measured by 3D-laser surface analysis and FESEM, respectively. Residual stress was calculated by Stoney's equation after measuring radius curvature of specimen. The addition of additives except high concentration of accelerator in the electrolyte decreased surface roughness of electroplated copper film. Such a tendency was explained by the function of additives among which the inhibitor and the leveler inhibit electroplating on a whole surface and prolusions, respectively. The accelerator plays a role in accelerating the electroplating in valley parts. The inhibitors and the leveler increased residual stress, whereas the accelerator decreased it. It was thought to be related with entrapped additives on electroplated copper film rather than the preferred orientation of electroplated copper film. The reason why additives lead to residual stress remains for the future work.

The Biological Functionality of Electro-Galvanized Steels Coated with a Hybrid Composite Containing Pyrethroid

  • Jo, Du-Hwan;Kim, Myung-Soo;Kim, Jong-Sang;Oh, Hyun-Woo
    • Corrosion Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.74-80
    • /
    • 2018
  • The electronic industries require environmentally-friendly and highly functional materials to enhance the quality of human life. Home appliances require insect repellent steels that work to protect household microwave ovens from incurring damage by insects such as fire ants and cockroaches in tropical regions. Thus, POSCO has developed new types of functional steels, coated with an array of organic-inorganic hybrid composites on the steel surface, to cover panels in microwave ovens and refrigerators. The composite solution uses a fine dispersion of hybrid solution with polymeric resin, inorganic and a pyrethroid additive in aqueous media. The hybrid composite solution coats the steel surface, by using a roll coater and is cured using an induction curing furnace on both the continuous galvanizing line and the electro-galvanizing line. The new steels were evaluated for quality performances, salt spray test for corrosion resistance and biological performance for both insect repellent and antimicrobial activity. The new steels with organic-inorganic composite coating exhibit extraordinarily biological functionalities, for both insect repellent and antimicrobial activities for short and long term tests. The composite-coating solution and experimental results are discussed and suggest that the molecular level dispersion of insecticide on the coating layer is key to biological functional performances.

Studies on the Transport of Organic Acids in the Rabbit Kindey Slice, with Special Reference to the Role of Various Electrolytes (가토신피질절편(家兎腎皮質切片)에서의 유기산이동(有機酸移動)에 관(關)한 연구(硏究) -특(特)히 전해질(電解質)의 영향(影響)에 대(對)하여-)

  • Chung, Soon-Tong
    • The Korean Journal of Physiology
    • /
    • v.2 no.1
    • /
    • pp.59-71
    • /
    • 1968
  • The uptake of phenolsulfonphthalein (PSP) and of paraaminohippuric acid (PAH) by cortical slices of the rabbit kidney was investigated while varying the composition of medium. The overall uptake of these substances displayed typical active transport characteristics and was significantly enhanced in presence of acetate. When the phosphate buffer was used the optimal pH was 7.4 for both substances. However, when the tris-buffer was used the optimal pH was 7.4 for PSP and 8.3 for PAH. Removal of $Na^+$ from the medium resulted in a significant reduction in the uptake. Similar results, though lesser in magnitude, were obtained when either $K^+\;or\;Ca^{++}$ was removed from the medium. However, there was no additive effect when $K^+\;and/or\;Ca^{++}$ were additionally removed from the $Na^+-free$ medium. The presence of ${NH_4}^+$ greatly reduced while $Li^+\;and\;Mg^{++}$ moderately reduced the uptake of both substances. However, choline had no effect. In substrate-leached slices, acetate greatly enhance the uptake of organic acids; but this action was not demonstrable in absence of $Na^+,\;K^+\;or\;Ca^{++}$.

  • PDF

Effect of Adding Gypsum and Coal Fly Ash on Composting Process of Pig Manure (돈분 퇴비화 공정에서 석고 및 석탄회의 첨가효과)

  • 유현철;김정섭;곽명화;이히인;박승조
    • Resources Recycling
    • /
    • v.11 no.1
    • /
    • pp.32-36
    • /
    • 2002
  • This study was conducted to compost the mixture of Pig manure, gypsum and fly ash. Initial moisture contents of sample A (Pig manure : saw dust = 6 : 4) and C (Pig manure : saw dust : gypsum : coal fly ash= 6 : 2 : 1 : 1) in the reactor were 64 and 50%. Also temperature and pH of samples in the reactor was nearly the same. Total Organic Carbon (TOC) concentration of sample A and C were about 5500, 2900 mg/kg respectively. This sample was needed a lot of time to mature as viewing cation exchange capacity (CEC) after experiment was over. However added with gypsum and coal fly ash in Process of Pig manure composting Process was suggested that gypsum and coal fly ash have a roles of additive agent.

Improvement on Enzyme Immobilization in Polypyrrole-Glucose Oxidase Enzyme Electrode using Organic Solvent Additive I. Ultraviolet Spectroscopic Analyses (유기용매 첨가에 따른 Polypyrrole-Glucose Oxidase 효소전극의 효소고정화 향상 I. 자외선 분광분석)

  • 김현철;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.7
    • /
    • pp.615-620
    • /
    • 2002
  • In the case of immobilizing of glucose oxidase into polypyrrole (PPy) using electrosynthesis, the glucose oxidise (GOx) forms a coordinate bond with the polymers backbone. However, because of intrinsic insulation and net-chain of the enzyme, the charge transfer and mass transport are obstructed during the film growth. Therefore, the film growth is dull. We synthesized enzyme electrodes by electropolymerization added some organic solvent, such as ethanol and tetrahydrofuran (THF). The formative seeds of film growth was delayed by adding ethanol. The delay was induced by radical transfer between ethanol and pyrrole monomer. The radical transfer reactions shared the contribution of dopants between electrolyte anion and GOx polyanion. This led to increase amount of immobilized the enzyme in PPy. For the UV absorption spectra of synthetic solution before synthesis and after, in the case of ethanol added, the optical density was slightly decreased for the GOx peaks. It suggests amount of GOx in the solution was decreased and amount of GOx in the film was increased.

Characteristics of the Ceramic Filter with the Control of Particle Size and Graphite Additive for the Hazardous Particle and Gas Removal (입도와 흑연 첨가제에 따른 유해 입자 및 가스 동시제거용 세라믹필터 특성평가)

  • Cho, Eul-Hun;Lee, Kun-Jae
    • Journal of Powder Materials
    • /
    • v.21 no.6
    • /
    • pp.454-459
    • /
    • 2014
  • In this study, the porous ceramic filter was developed to be able to remove both dust and hazardous gas contained in fuel gas at high temperature. The porous ceramic filters were fabricated and used as a catalyst support. And the effects have been investigated such as the mean particle size, organic content and addition of foaming agent on the porosity, compressive strength and pressure drop of ceramic filters. With the increase of mean powder size and the organic content for the cordierite filter, the porosity was increased, but the compressive strength and pressure drop were decreased. From the results of the research, the optimum condition for the fabrication of ceramic filters could be acquired and they had the porosity of 58%, the compressive strength of 13.4 MPa and the pressure drop of 250 Pa. It was expected that this ceramic filter was able to be applied to the glass melting furnace, combustor, and dust/toxic gas removal filter.

A study on the efficacy of low viscous nanosized biopolymer on the mechanical and hydraulic properties of organic silt

  • Govindarajan Kannan;Evangelin Ramani Sujatha
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.221-231
    • /
    • 2023
  • Biopolymer stabilization is a sustainable alternative to traditional techniques that cause a lesser negative impact on the environment during production and application. The study aims to minimize the biopolymer dosages by sizing the bio-additives to the nanoscale. This study combines the advantages of bio and nanomaterials in geotechnical engineering applications and attempts to investigate the behaviour of a low viscous biopolymer, nano sodium carboxymethyl cellulose (nCMC), to treat organic soil. Soil is treated with 0.25%, 0.50%, 0.75% and 1.00% of nano-bio additive, and its effect on the plastic behaviour, compaction characteristics, strength, hydraulic conductivity (HC) and compressible nature are investigated. The strength increased by 1.68 times after 90 days of curing at a dosage of 0.5% nCMC through the formation of gel threads connecting the soil particles that stiffened the matrix. The viscosity of 1% nCMC increased exponentially, deterring fluid flow through the voids and reduced the HC by 0.85 times after curing for 90 days. Also, beyond the optimum dosage of 0.50%, the nCMC forms a film around the soil particles that inhibits the inter-particle cohesion causing a reduction in strength. Experimental results show that nCMC can effectively substitute conventional additives to stabilize the soil.

Comparison of the Sonodegradation of Naphthalene and Phenol by the Change of Frequencies and Addition of Oxidants or Catalysts (주파수 변화 및 보조제 첨가에 따른 나프탈렌 및 페놀의 초음파 분해효율 비교)

  • Park, Jong-Sung;Her, Nam-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.706-713
    • /
    • 2010
  • The research seeks to find the optimal conditions for sonodegradation of naphthalene and phenol as exemplary organic pollutants to be subjected to ultrasound in varying frequencies (28 kHz, 580 kHz, and 1,000 kHz) and in the presence of different kinds of additive (T$TiO_2$, $H_2O_2$, $FeSO_4$, Zeolite, and Cu). In cases of both naphthalene and phenol, 580 kHz of ultrasound has proven to be the most effective among others at sonodegradation. Based on the observation that OH radicals are also produced in maximum under exposure of 580 kHz of ultrasound, we concluded that this frequency of ultrasound creates hospitable condition for the combined process of degradation by pyrolysis and oxidization. $FeSO_4's$ degradation rate and k1 value have increased by approximately 1.8 times compared with the results of the solutions without any additives. This seems to be the result of ultrasound reaction which, accompanied by Fenton's reaction, increased the oxidative degradation and the production of OH radicals. However, application of ultrasound and Fenton's reaction is limited to the batch type conditions, as its use in continuous system can cause loss of iron or decay of the cistern, thereby creating additional pollutants. When the additive is replaced with $TiO_2$, on the contrary, the rate of sonodegradation has increased up to 20% compared to when there was no additive. We therefore conclude that $TiO_2$ could prove to be an effective additive for ultrasound degradation in continuous treatment system.

Determination of Thiamine in Pharmaceutical Preparations by Reverse Phase Liquid Chromatography Without Use of Organic Solvent

  • Suh, Joon Hyuk;Kim, Junghyun;Jung, Juhee;Kim, Kyunghyun;Lee, Seul Gi;Cho, Hyun-Deok;Jung, Yura;Han, Sang Beom
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1745-1750
    • /
    • 2013
  • A novel green aqueous mobile phase modified with room temperature ionic liquids (RTILs) was employed in the absence of volatile organic solvents or ion-pairing reagents to analyze thiamine, a very polar compound, by reverse phase high performance liquid chromatography (RP-HPLC). Due to its strongly hydrophilic nature, thiamine was eluted near the column dead time ($t_0$) using a mobile phase without adding RTILs or ion-pairing reagents, even if a 100% aqueous mobile phase, which has weak elution power under reverse phase conditions, was used. Thus, 1-ethyl-3-methyl-imidazolium hexafluorophosphate ([EMIM][$PF_6$]), which has the strongest chaotropic effect, was selected as a mobile phase additive to improve retention and avoid baseline disturbances at $t_0$. Various mobile phase parameters such as cation moiety, chaotropic anion moiety, pH and concentration of RTILs were optimized to determine thiamine at the proper retention time. Method validation was performed to assess linearity, intra- and inter-day accuracy and precision, recovery and repeatability; all results were found to be satisfactory. The developed method was also compared to the current official United States Pharmacopoeia (USP) and Korean Pharmacopoeia (KP) methods using an organic mobile phase containing an ionpairing reagent by means of evaluating various chromatographic parameters such as the capacity factor, theoretical plate number, peak asymmetry and tailing factor. The results indicated that the proposed method exhibited better efficiency of thiamine analysis than the official methods, and it was successfully applied to quantify thiamine in pharmaceutical preparations.