• Title/Summary/Keyword: Organic Waste Sludge

Search Result 262, Processing Time 0.028 seconds

Optimal Mixing Ratio of Wastewater from Food Waste and Cattle Manure and Hygienic Aspect in Batch Type Anaerobic Digestion (음식물폐수와 축산분뇨의 혼합소화에서 적정 혼합비 및 소화슬러지의 위생성 연구)

  • Jeong, Doo-Young;Chung, Myung-Hee;Kim, Young-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.2
    • /
    • pp.93-100
    • /
    • 2009
  • This research was performed to figure out the optimal mixing ratio of food- to livestock wastewater for the best degradation of organic matter in the anaerobic digestion. The presence of various microorganisms, such as Escherichia coli and Staphylococcus aureus, was also investigated in both wastewater in this process. Enteric bacteria were only found in livestock wastewater, whereas pathogenic bacteria like S. aureus were detected in both wastewater. The optimal mixing ratio of food- to livestock wastewater for the best mineralization was found to fifty to fifty, with reduction ratios of $BOD_5$, CODcr SS as 23.2%, 24.7%, 19.7%, respectively. Hygiene of the digested sludge was also analyzed by counting the number of total colonies and various pathogens. Enterobacteriaceae including E. coli were barely detected in 10 days after reaction. Meanwhile, S. aureus was gradually reduced during reaction, even showing 1,000~5,000 CFU/mL in final days.

Genomic Barcode-Based Analysis of Exoelectrogens in Wastewater Biofilms Grown on Anode Surfaces

  • Dolch, Kerstin;Wuske, Jessica;Gescher, Johannes
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.511-520
    • /
    • 2016
  • The most energy-demanding step of wastewater treatment is the aeration-dependent elimination of organic carbon. Microbial fuel cells (MFCs) offer an alternative strategy in which carbon elimination is conducted by anaerobic microorganisms that transport respiratory electrons originating from carbon oxidation to an anode. Hence, chemical energy is directly transformed into electrical energy. In this study, the use and stability of barcode-containing exoelectrogenic model biofilms under non-axenic wastewater treatment conditions are described. Genomic barcodes were integrated in Shewanella oneidensis, Geobacter sulfurreducens, and G. metallireducens. These barcodes are unique for each strain and allow distinction between those cells and naturally occurring wild types as well as quantification of the amount of cells in a biofilm via multiplex qPCR. MFCs were pre-incubated with these three strains, and after 6 days the anodes were transferred into MFCs containing synthetic wastewater with 1% wastewater sludge. Over time, the system stabilized and the coulomb efficiency was constant. Overall, the initial synthetic biofilm community represented half of the anodic population at the end of the experimental timeline. The part of the community that contained a barcode was dominated by G. sulfurreducens cells (61.5%), while S. oneidensis and G. metallireducens cells comprised 10.5% and 17.9%, respectively. To the best of our knowledge, this is the first study to describe the stability of a synthetic exoelectrogenic consortium under non-axenic conditions. The observed stability offers new possibilities for the application of synthetic biofilms and synthetically engineered organisms fed with non-sterile waste streams.

Effects of Vermicompost Application on the Growth and Ginsenoside Content of Panax ginseng in a Reclaimed Field

  • Eo, Jinu;Park, Kee-Choon;Lim, Jin-Soo;Kim, Myung-Hyun;Choi, Soon-Kun;Na, Young-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.138-143
    • /
    • 2016
  • The objective of this study was to evaluate the effects of the application of vermicomposts on the growth parameters and ginsenoside content of ginseng roots. Food waste vermicompost (FW), cow manure vermicompost (CM), and paper sludge vermicompost (PS) were applied at 10 and $40t\;ha^{-1}$, respectively. One-year-old seedlings were transplanted and 4-year-old roots were harvested. Soil nitrate and phosphate concentrations were increased in the plots applied with FW and CM at $40t\;ha^{-1}$. Soil pH and exchangeable Ca concentrations were higher at FW $40t\;ha^{-1}$ than at CM $40t\;ha^{-1}$. Root yield increased when treated with FW $40t\;ha^{-1}$ in comparison to the yield for the control. The incidences of root rot disease and ginsenoside content were not significantly affected by the treatments. The results suggested that application of vermicompost might not show a relationship between root biomass and ginsenoside content. It further showed that proper use of vermicompost can promote root yield without a reduction in root quality or an increase in the incidence of root rot disease in reclaimed fields.

Biochemical Methane Potential and Biodegradability of Animal Manure and Cultivated Forage Crops at the Reclaimed Tideland (가축분뇨와 간척지 사료작물의 메탄발생량과 생분해도)

  • Heo, Nam-Hyo;Lee, Seung-Heon;Kim, Byeong-Ki
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.56-64
    • /
    • 2008
  • Anaerobic biodegradability (AB), which can be determined with the ultimate methane yield by the decomposition of organic materials, is one of the important parameters for the design and the operation of anaerobic digestion plant. In this study, Biochemical methane potential (BMP) test has been carried out to evaluate the methane yields of animal manures such as pig and cattle slurries, and different forage crops cultivated at the reclaimed tideland such as maize, sorghum, barley, rye, Italian ryegrass (IRG), rape, rush, and waste sludge produced from slaughterhouse wastewater treatment plant (SSWTP). In the ultimate methane yield and biodegradability of animal manure, those of pig slurry were 345 $mlCH_4/gVS_{fed}$ and 44.7% higher than 247 $mlCH_4/gVS_{fed}$ and 46.4% of cattle slurry (Cat. 2). The ultimate methane yield and biodegradability of spike-crop rye (Rye 1) were 442.36 $mlCH_4/gVS_{fed}$ and 86.5% the highest among different forage crops, those of the other forage crops ranged from 306.6 to 379 $mlCH_4/gVS_{fed}$ of methane yield with the AB having the range of about 60 to 77%. Therefore the forage crops could be used as a good substrate to increase the methane production and to improve the biodegradability in anaerobic co-digestion together with animal manure.

  • PDF

Development of Alternative External Carbon Source from Wasting Carbonaceous Organic Resource and Full Scale Application (유기폐자원을 이용한 고도하수처리 대체탄소원 개발 및 실플랜트 적용)

  • Jung In Chul;Kim Ho Young;Kang Dong Hyo;Jung Joung Soon;Lee Sang Won;Lim Keun Taek;Kim Chang Won
    • Journal of Environmental Science International
    • /
    • v.13 no.10
    • /
    • pp.911-919
    • /
    • 2004
  • The purpose of this research was evaluated economical effect to apply alternative external carbon source. Conventional activated sludge process in municipal wastewater treatment plant was adapted and introduced to Biological nutrient removal processes to meet the newly enforced effluent quality standard for nutrient removal in Korea. Low $COD/NH_4^+-N$ ratio and higher nutrient concentration of influent characteristics force to inject external carbon source for denitrifying recycled nitrate. In the most case, methanol was used as external carbon source. But Methanol is expensive and very dangerous in handling. So we could find cheaper and safer external carbon source substituted methanol in last study. This alternative external carbon source is named RCS(recoverd carbon source) and a by-product of fine chemical product at chemical plant. When RCS was applied real municipal wastewater treatment plant, average $55\~65\%$ of T-N removal efficiency, 8.8mg/l of effluent T-N concentration, 11.3mg/l of effleunt COD concentration were obtained without effluent COD increase as against used methanol. To apply RCS in municipal wastewater treatment plant obtain approximately $\74.5%$ expenditure cost reduction in comparison with methanol dosage cost.

Improvement of Verification Method for Remedial Works through the Suggestion of Indicative Parameters and Sampling Method (정화 보조지표와 시료 채취 방법 제안을 통한 토양정화검증 제도 개선 연구)

  • Kwon, Ji Cheol;Lee, Goontaek;Kim, Tae Seung;Yoon, Jeong-Ki;Kim, Ji-in;Kim, Yonghoon;Kim, Joonyoung;Choi, Jeongmin
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.179-191
    • /
    • 2016
  • In addition to the measurement of the concentration of soil contaminants, the new idea of indicative parameters was proposed to validate the remedial works through the monitoring for the changes of soil characteristics after applying the clean up technologies. The parameters like CFU (colony forming unit), pH and soil texture were recommended as indicative parameters for land farming. In case of soil washing, water content and the particle size distribution of the sludge were recommended as indicative parameters. The sludge is produced through the particle separation process in soil washing and it is usually treated as a waste. The parameters like water content, organic matter content, CEC (cation exchange capacity) and CFU were recommended as indicative parameters for the low temperature thermal desorption method. Besides the indicative parameter, sampling methods in stock pile and the optimal minimum amount of composite soil sample were proposed. The rates of sampling error in regular grid, zigzag, four bearing, random grid methods were 17.3%, 17.6%, 17.2% and 16.5% respectively. The random grid method showed the minimum sampling error among the 4 kinds of sampling methods although the differences in sampling errors were very little. Therefore the random grid method was recommended as an appropriate sampling method in stock pile. It was not possible to propose a value of optimal minimum amount of composite soil sample based on the real analytical data due to the dynamic variation of $CV_{fund{\cdot}error}$. Instead of this, 355 g of soil was recommended for the optimal minimum amount of composite soil sample under the assumption of ISO 10381-8.

Technology Trends of Metal Recovery from Wastewater (폐수(廢水) 중(中) 유가금속(有價金屬) 회수기술(回收技術) 동향(動向))

  • Hwang, Young-Gil;Kil, Sang-Cheol;Kim, Jong-Heon
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.91-99
    • /
    • 2013
  • Steel industry which has been accomplishes the base of our country economy, automobile and electronic industry are taking charge of the role, whose electroplating is important. Large amount of wastewater and various metal salts, including hazardous materials was generated from the electroplating pre-treatment, plating, washing and post-plating. Currently, the general wastewater follows in the environmental law and neutralization after controlling, sludge where the various metal is mixed reclaims below multiple regulative and trust it is controlling. The sludge which includes the gas price metal reclaims in the field and trust it controls. a reclamation price of land it is insufficient but and the control expense holds plentifully and it loses the gas price metal which is valuable. Consequently, The research regarding to recover a gas price metal actively from this waste water, it is advanced. A new method to recover valuable metals from electroplating wastewater synthesis of metal sulfides using topical methods utilizing iron oxidizing bacteria, reagent of sulfides and solvent extraction using an organic solvent, such as the development of the law to recover these metals and metal sulfides of wastewater using selective recovery have been studied. By using these wastewater treatment method under frequency above 95%, it has been obtained the valuable metal from the wastewater, where the metal ion of Fe, Cu, Zn and Ni complexes was mixed. As we discuss the wastewater, which has been discharged from electroplating process, it is important and will be applied to the resources of metal in the urban mine.

Performance Evaluation of Anaerobic Bioreactors in Treating Swine Wastewater (양돈폐수 처리를 위한 혐기성 생물반응기의 성능 비교)

  • Kim, Jong-Soo;Lee, Gook-Hee;Sa, Tongmin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.2047-2058
    • /
    • 2000
  • The effects of operating parameters on performance of upflow anaerobic sludge blanket(UASB). anaerobic filter(AF), and two-stage anaerobic sludge bed filter (ASBF) bioreactors in treating swine wastewater were evaluated by operating the lab-scale bioreactors upto hydraulic retention time(HRT) of 1 day and organic loading rate (OLR) of $5.1kg-COD/m^3{\cdot}d$ for 200 days. Swine wastewaters of which characteristics were affected by types of hog raising and seasons contained high concentrations of COD, SS, and ammonia. Inoculation of the bioreactors with waste sludge from anaerobic treatment facility of local municipal wastewater treatment plant was effective in developing biomass in the bioreactors. Acclimation period of the bioreactors with swine wastewaters required approximately 40 days, but that for AF and two-stage ASBF, which were filled with media, was faster than VASB. The bioreactors showed high and stable COD removal efficiency of 77~91% at influent T-N concentrations of 370~800mg/L but low and unstable COD removal efficiency of 24~94% at influent T-N concentrations of 760~1,310mg/L. It is essential to remove ammonia prior to anaerobic treatment since the concentrations of ammonia in swine wastewaters showed toxic effects to methanogenic bacteria. The bioreactors were effective in treating swine wastewaters with COD removal efficiency of 78.9~81.5% and biogas generation rate of $0.39{\sim}0.59m^3/kg-COD_r$ at OLR of $1.1{\sim}2.2kg-COD/m^3{\cdot}d$: however, an increase of OLR by reducing HRT and increasing influent COD caused decrease of COD removal efficiency. The extent of decrease in COD removal efficiency was higher in UASB than AF and two-stage ASBF. AF and two-stage ASBF anaerobic bioreactors were effective in treating varing characteristics of swine wastewaters since they showed high and stable COD removal efficiency at high OLR due to effective retention of biomass by media and staging.

  • PDF

Effect of different types of biochar on the growth of Chinese cabbage (Brassica chinensis)

  • Lee, Jae-Han;Seong, Chang-Jun;Kang, Seong-Soo;Lee, Ho-Cheol;Kim, Soo-Hun;Lim, Ji-Sun;Kim, Jae-Hong;Yoo, Joun-Hyuk;Park, Jung-Hyun;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.197-203
    • /
    • 2018
  • Biochar is the carbon solid produced through the pyrolysis of a biomass from organic sources such as agricultural waste, animal manure, and sludge under limited or anaerobic conditions. Biochar has the effect of reducing greenhouse gases through the carbon sequestration method; additionally, biochar is known to function as a soil amendment. This experiment was conducted to evaluate the application of biochar on the growth characteristics of Chinese cabbage at Chungnam National University in Daejeon, Korea. The Chinese cabbage was grown for 50 days in a glasshouse in pots. A pruning branch was used to produce the bead and pellet forms of biochar through pyrolysis. The biochar was added to the soil at 0, 2, and 5% by weight. The Chinese cabbage with the 2% treatment of the bead form of biochar had the highest fresh weight ($149.43{\pm}15.92g\;plant^{-1}$) which was increased by 10% compared to the control ($136.91{\pm}31.46g\;plant^{-1}$). Moreover, for the 5% treatment of the bead form of biochar ($60.91{\pm}9.82g\;plant^{-1}$), the growth decreased by 57% compared to the control. As the content of the bead form of biochar increased, the shoot dry weight, leaf number, leaf length and lead width that appeared decreased. An increase in the total organic matter, Avail. $P_2O_5$, Ex. cation and EC was observed when the biochar content was increased. Our results support the application of 2% biochar in the bead form for increased growth of Chinese cabbage.

Effects of Water Quality Improvement by Porosity of Fill Materials in Mattress/Filter System (Mattress/Filter 채움재의 공극률에 따른 하천수질 개선효과)

  • Ko, Jin Seok;Lee, Sung Yun;Heo, Chang Hwan;Jee, Hong Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.51-60
    • /
    • 2006
  • Water quality improvement in mattress/filter system using porous material like slag from industrial activity and zeolite that has been studied for environment improvement and pollution abatement is very useful in polluted stagnant stream channel. Slag is consisted of CaO, $SiO_2$, $Al_2O_3$ and $Fe_2O_3$. Slag with large specific surface area of porosity has been used such as sludge settling and adsorptive materials. Because slag is porous, it can be used for purification filter. As slag is used as filled materials of mattress/filter system and the system has good advantages for the waste water treatment, water recycling, and the improvement of water quality at the same time and so on. Because zeolite has much advantage of cation exchange, adsorption, catalyst and dehydration characteristics, It is used for environment improvement of livestock farms, treatment of artificial sewage and waste water, improvement of drinking water quality, radioactive waste disposal and radioactive material pollution control. In this study, according to verifying effects of water quality improvement of fill materials by porosity that 38.6%, 45.8% and 49.8% respectively in the stagnant stream channel, water quality monitoring of inflow and outflow was conducted on pH, DO, BOD, COD, SS, T-N and T-P. Mattress/filter system was able to accelerate water quality improvement by biofilter as waste water flows through gap of mattress/filter fill materials and by contact catalysis, absorption, catabolism by biofilm. Mattress/filter system used slag and zeolite forms biofilm easily and accelerates adsorption of organic matter. As a result, mattress/filter system increases water self-purification and accelerates water quality improvement available for stream water clean-up.