• Title/Summary/Keyword: Organic Rice

Search Result 1,154, Processing Time 0.026 seconds

Determination of Energy Requirements for Maintenance in Hanwoo Steers (거세한우의 유지에너지 요구량 결정)

  • Kim, K.H.;Oh, Y.G.;Kim, W.;Lee, S.C.;Shin, K.J.;Jeon, B.T.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.193-200
    • /
    • 2004
  • This experiment was carried out to determine energy requirements for maintenance of Hanwoo steers. Nine Hanwoo steers weighing 376.6$\pm$12.5kg were used in this experiment and fed rice straw(44%) and concentrate (56%) at three different energy levels; 0.8 times maintenance(0.8M), 1.2 times(1.2M) and 1.6 times(1.6M), respectively. Dry matter intake was 48.5, 65.9 and 86.5g/$BW^{0.75}$ for 0.8M, 1.2M and 1.6M, respectively. Increase in energy intake with the increased DM intake did not affect digestibilities of dry matter, organic matter, crude protein, crude fiber, crude fat and nitrogen-free extract. Gross energy intake averaged 190.8, 255.8 and 340.9kcal/BW0.75 for 0.8M, 1.2M and 1.6M, respectively. Energy loss was 41% feces and 0.6${\sim}$1.5% urine of gross energy intake. Further, energy loss from methane produced during rumen fermentation was 5${\sim}$9%, while body heat loss averaged 40${\sim}$60%. Intercept of the regression equation between ME intake and retained energy indicated that energy requirement for maintenance was 124.3kcal $ME/BW^{0.75}$.

A Study on the Characteristics of Ecosystem Change and Management in Urban Wetland - Focusing on the Dunchon-Dong Ecological and Scenery Conservation Area, Seoul - (도시 습지 자연생태계 변화 특성 및 관리방안 연구 - 서울시 둔촌동 생태·경관보전지역을 대상으로 -)

  • Han, Bong-Ho;Park, Seok-Cheol;Kim, Jong-Yup
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.1-20
    • /
    • 2023
  • The present study has monitored the changes in the biodiversity of Dunchon-Dong ecological and landscape conservation area after the restoration of the wetland, identified and analyzed the threats to the ecosystem, and presented a management plan accordingly. In this area which was forests and rice paddies in the past, apartment reconstruction is currently underway, with some hinterland forests and wetlands remaining. When we look into the change in the floras, the total number of species was 193 in 2000 before the restoration, it decreased from 2004 to 2006, and as of 2019, it was 149, showing an increasing trend. The result of comparing the species that emerged before and after the restoration showed an increase in Cyperaceae herbs such as Carex maximowiczii and Carex dispalata growing in wetland areas within forests and Schoenoplectiella juncoides and Schoenoplectus tabernaemontani growing in areas within wetlands where shallow water is maintained. As a result of analyzing the change in the area ratio of each type of extant vegetation, the wetland native herbs formed the power at the highest ratio after the restoration. The change in the power of the wetland native herbs was on an increasing trend until 2007, after which it decreased much in 2010 and then gradually increased, showing values of 26.6% in 2000, 44.6% in 2002, 49.0% in 2005, 53.3% in 2007, 28.7% in 2010, and 37.3% in 2019. The cause of the decrease in 2010 was judged to be due to the vegetation management conducted to secure open water and remove organic matter in freshwater reservoirs. The amphibia which emerged from 2000 to 2019 was a total of 9 species including Hynobius leeshii, Bufo gargarizans, Kaloula borealis, and Rana uenoi. As a result of the changes in the emerging wild birds, the species diversity index before the restoration was 0.9922 in 2000, and the species diversity index after the restoration gradually increased to 1.2449 in 2005, 1.2467 in 2010, and 2.2631 in 2019. The amphibia and wild birds inhibiting in the Dunchon-Dong forest and wetland were judged to have increased through continuous wetland maintenance such as naturalized plant removal management, native plant maintenance, and open water securing management. For the ecosystem preservation management of the Dunchon-Dong ecological and landscape conservation area, it was suggested to minimize the impact of the Dunchon-Dong reconstruction project, reorganize the indiscriminate access roads adjacent to the wetland, and reorganize the main entrance to the wetland. For ecosystem restoration management, systematic restoration and ecological buffer planting were suggested to be carried out at the time of construction fence demolition.

Study on The Distribution of Applied 32P into Different Forms of P Compounds in the Soils During Incubation (논·밭 토양(土壤)에 시용(柴用)된 32P의 토양중(土壤中) 상이(相異)한 인산화합물(燐酸化合物)로의 분배(分配)에 관(關)한 연구(硏究))

  • Hong, Jung-Kook;Hong, Chong-Woon;Park, Sang-Ji;Steenberg, Kjell
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.12 no.3
    • /
    • pp.117-124
    • /
    • 1979
  • The present work was carried out to study the fate of applied phosphorus labelled with $^{32}P$ and its availability to plants in soils subjected to different management practices. The results can be summarized as follows (Table 3): 1. The applied phosphorus was transformed into different phosphorus compounds in the soils depending upon the management practices and soil characteristics. 2. In the flooded paddy soil (pH 5.8) added P after one week of incubation was transformed into various fractions, the order of abundance being: Al-P> Ca-P$${\sim_\sim}$$Fe-P> Org.-P. After two weeks the order changed to: Fe-P> Al-P> Ca-P> Org.-P. The amounts of the Fe-P and Al-P fractions were found to increase from the second week of incubation whereas a decrease in Ca-P was noticed with the organic-P remaining constant. The amount of available P decreased from the first to the third week of incubation, but increased thereafter. 3. In the volcanic ash soil a major proportion of the applied phosphorus was found in the Fe-P fraction during the whole experimental period. The interconversions of the $^{32}P$ among the different phosphate fractions was not as evident as in the case of flooded rice soil. The recovery of applied P was low and remained constant throughout the incubation period. 4. In the upland soils relatively more of the applied phosphorus was found in the Ca-P fraction as compared with those of the other soils. As in the flooded paddy soil $^{32}P$ in the Ca-P fraction decreased with increasing incubation time, whereas in the Fe-P fraction it increased with time. The recovery of added phosphate as available P followed different patterns for the cultivated and the uncultivated soils. In the cultivated soils lit was relatively high and remained nearly constant during the whole incubation period. In the uncultivated soil on the other hand, it was high at the earlier time of incubation, but decreased with incubation time.

  • PDF

Characteristics and classification of paddy soils on the Gimje-Mangyeong plains (김제만경평야(金堤萬頃平野)의 답토양특성(沓土壤特性)과 그 분류(分類)에 관(關)한 연구(硏究))

  • Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.5 no.2
    • /
    • pp.1-38
    • /
    • 1972
  • This study, designed to establish a classification system of paddy soils and suitability groups on productivity and management of paddy land based on soil characteristics, has been made for the paddy soils on the Gimje-Mangyeong plains. The morphological, physical and chemical properties of the 15 paddy soil series found on these plains are briefly as follows: Ten soil series (Baeggu, Bongnam, Buyong, Gimje, Gongdeog, Honam, Jeonbug, Jisan, Mangyeong and Suam) have a B horizon (cambic B), two soil series (Geugrag and Hwadong) have a Bt horizon (argillic B), and three soil series (Gwanghwal, Hwagye and Sindab) have no B or Bt horizons. Uniquely, both the Bongnam and Gongdeog series contain a muck layer in the lower part of subsoil. Four soil series (Baeggu, Gongdeog, Gwanghwal and Sindab) generally are bluish gray and dark gray, and eight soil series (Bongnam, Buyong, Gimje, Honam, Jeonbug, Jisan, Mangyeong and Suam) are either gray or grayish brown. Three soil series (Geugrag, Hwadong and Hwagye), however, are partially gleyed in the surface and subsurface, but have a yellowish brown to brown subsoil or substrata. Seven soil series (Bongnam, Buyong, Geugrag, Gimje, Gongdeog, Honam and Hwadong) are of fine clayey texture, three soil series (Baeggu, Jeonbug and Jisan) belong to fine loamy and fine silty, three soil series (Gwanghwal, Mangyeong and Suam) to coarse loamy and coarse silty, and two soil series (Hwagye and Sindab) to sandy and sandy skeletal texture classes. The carbon content of the surface soil ranges from 0.29 to 2.18 percent, mostly 1.0 to 2.0 percent. The total nitrogen content of the surface soil ranges from 0.03 to 0.25 percent, showing a tendency to decrease irregularly with depth. The C/N ratio in the surface soil ranges from 4.6 to 15.5, dominantly from 8 to 10. The C/N ratio in the subsoil and substrata, however, has a wide range from 3.0 to 20.25. The soil reaction ranges from 4.5 to 8.0. All soil series except the Gwanghwal and Mangyeong series belong to the acid reaction class. The cation exchange cpacity in the surface soil ranges from 5 to 13 milliequivalents per 100 grams of soil, and in all the subsoil and substrata except those of a sandy texture, from 10 to 20 milliequivalents per 100 grams of soil. The base saturation of the soil series except Baeggu and Gongdeog is more than 60 percent. The active iron content of the surface soil ranges from 0.45 to 1.81 ppm, easily-reduceable manganese from 15 to 148 ppm, and available silica from 36 to 366 ppm. The iron and manganese are generally accumulated in a similar position (10 to 70cm. depth), and silica occurs in the same horizon with that of iron and manganese, or in the deeper horizons in the soil profile. The properties of each soil series extending from the sea shore towards the continental plains change with distance and they are related with distance (x) as follows: y(surface soil, clay content) = $$-0.2491x^2+6.0388x-1.1251$$ y(subsoil or subsurface soil, clay content) = $$-0.31646x^2+7.84818x-2.50008$$ y(surface soil, organic carbon content) = $$-0.0089x^2+0.2192x+0.1366$$ y(subsoil or subsurface soil, pH) = $$-0.0178x^2-0.04534x+8.3531$$ Soil profile development, soil color, depositional and organic layers, soil texture and soil reaction etc. are thought to be the major items that should be considered in a paddy soil classification. It was found that most of the soils belonging to the moderately well, somewhat poorly and poorly drained fine and medium textured soils and moderately deep fine textured soils over coarse materials, produce higher paddy yields in excess of 3,750 kg/ha. and most of the soils belonging to the coarse textured soils, well drained fine textured soils, moderately deep medium textured soils over coarse materials and saline soils, produce yields less than 3,750kg/ha. Soil texture of the profile, available soil depth, salinity and gleying of the surface and subsurface soils etc. seem to be the major factors determining rice yields, and these factors are considered when establishing suitability groups for paddy land. The great group, group, subgroup, family and series are proposed for the classification categories of paddy soils. The soil series is the basic category of the classification. The argillic horizon (Bt horizon) and cambic horizon (B horizon) are proposed as two diagnostic horizons of great group level for the determination of the morphological properties of soils in the classification. The specific soil characteristics considered in the group and subgroup levels are soil color of the profile (bluish gray, gray or yellowish brown), salinity (salic), depositonal (fluvic) and muck layers (mucky), and gleying of surface and subsurface soils (gleyic). The family levels are classified on the basis of soil reaction, soil texture and gravel content of the profile. The definitions are given on each classification category, diagnostic horizons and specific soil characteristics respectively. The soils on these plains are classified in eight subgroups and examined under the existing classification system. Further, the suitability group, can be divided into two major categories, suitability class and subclass. The soils within a suitability class are similar in potential productivity and limitation on use and management. Class 1 through 4 are distinguished from each other by combination of soil characteristics. Subclasses are divided from classes that have the same kind of dominant limitations such as slope(e), wettness(w), sandy(s), gravels(g), salinity(t) and non-gleying of the surface and subsurface soils(n). The above suitability classes and subclasses are examined, and the definitions are given. Seven subclasses are found on these plains for paddy soils. The classification and suitability group of 15 paddy soil series on the Gimje-Mangyeong plains may now be tabulated as follows.

  • PDF