• Title/Summary/Keyword: Organic Rankine Cycle

Search Result 117, Processing Time 0.031 seconds

Performance Characteristics Analysis of Combined Cycle Using Regenerative Organic Rankine Cycle and LNG Cold Energy (LNG 냉열과 재생 유기 랭킨 사이클을 이용한 복합 사이클의 성능 특성 해석)

  • KIM, KYOUNG HOON;JUNG, YOUNG GUAN;HAN, CHUL HO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.234-241
    • /
    • 2020
  • This paper presents a thermodynamic performance analysis of a combined cycle consisting of regenerative organic Rankine cycle (ORC) and liquefied natural gas (LNG) Rankine cycle to recover low-grade heat source and the cold energy of LNG. The mathematical models are developed and the system performances are analyzed in the aspect of thermodynamics. The effects of the turbine inlet pressure and the working fluid on the system performance such as the mass flow rates, heat transfers at heat exchangers, power productions at turbines, and thermal efficiency are systematically investigated. The results show that the thermodynamic performance of ORC such as net power production and thermal efficiency can be significantly improved by the regenerative ORC and the LNG cold energy.

Performance analysis of an organic Rankine cycle for ocean thermal energy conversion system according to the working fluid and the cycle (작동유체 및 사이클에 따른 해양온도차발전용 유기랭킨사이클의 성능분석)

  • Kim, Jun-Seong;Kim, Do-Yeop;Kim, You-Taek;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.881-889
    • /
    • 2015
  • Ocean thermal energy conversion is an organic Rankine cycle that generates power using the temperature difference between surface water and deep water. This study analyzes the thermodynamic efficiency of the cycle, which strongly depends on the working fluid and the cycle configuration. Cycles studied included the classical simple Rankine cycle, Rankine cycles with an open feedwater heater and an integrated regenerator, as well as the Kalina cycle. Nine kinds of simple refrigerants and three kinds of mixed refrigerants were investigated as the working fluids in this study. Pinch-point analysis that set a constant pinch-point temperature difference was applied in the performance analysis of the cycle. Results showed that thermodynamic efficiency was best when RE245fa2 was used as the working fluid with the simple Rankine cycle, the Rankine cycles with an open feedwater heater and an integrated regenerator, and when the mixing ratio of $NH_3/H_2O$ was 0.9:0.1 in the Kalina cycle. If the Rankine cycles with an open feedwater heater, an integrated regenerator, and the Kalina cycle were used for ocean thermal energy conversion, efficiency increases could be expected to be approximately 2.0%, 1.0%, and 10.0%, respectively, compared to the simple Rankine cycle.

Analysis of Efficiencies of Scroll Expander for Micro Scale Organic Rankine cycle (초소형 유기랭킨사이클용 스크롤팽창기 효율 특성 분석)

  • Shin, Dong Gil
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.398-401
    • /
    • 2012
  • In this Study, efficiencies of the scroll expander under development for organic Rankine cycle using engine waste heat of vehicle have been analyzed and compared with the commercial scroll expander. While operating organic Rankine cycle for analysing expander efficiencies, power of expander, inlet temperature of expander, inlet pressure of expander and the flow rate of the working fluid(refrigerant R134a) have been measured. Overall efficiency of the expander has been shown the very low level compared with the overall efficiency of the commercial expander. Especially, because the low volumetric efficiency has much effect on overall efficiency, the working fluid leakage trouble of expander has to be solved surely for improvement of the expander overall efficiency.

Selection of Working fluid for the Organic Rankine Cycle to Utilize Low-Temperature Waste Heat (저온 폐열을 이용하기 위한 유기랭킨 사이클의 작동유체 선정에 관한 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • New & Renewable Energy
    • /
    • v.10 no.4
    • /
    • pp.36-46
    • /
    • 2014
  • Low-grade heats are wasted even though an amount of their energy is huge. In the small and medium industrial complex sites, large amount of low-grade thermal energy generated during the manufacturing process is wasted if it is not used directly for building heating or air-conditioning. In order to utilize this waste thermal energy more efficiently, organic Rankine cycle (ORC) was adopted. The range of operating temperature of ORC was set to $60^{\circ}C$ from $30^{\circ}C$ applicable low-temperature waste heat. A study was conducted to select an appropriate organic working fluid based on these operating conditions. More than 60 working fluids were screened. Eleven working fluids were selected based on the requirements as working fluid for ORC such as environmentally friendly, safety, and good operation on the expander. Finally, six working fluids were selected by considering the operating temperature ranges. Then, a cycle analysis was conducted with these six working fluids. As a results, R-245fa and R-134a appeared as appropriate working fluids for ORC operating at low-temperature condition based on the system efficiency and the turbine output power.

Performance Analysis of a Vapor Compression Cycle Driven by Organic Rankine Cycle (유기 랭킨 사이클로 구동되는 증기압축 냉동사이클의 성능 해석)

  • Kim, Kyoung Hoon;Jin, Jaeyoung;Ko, Hyungjong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.521-529
    • /
    • 2012
  • Since the energy demand for refrigeration and air-conditioning has greatly increased all over the world, thermally activated refrigeration cycle has attracted much attention. This study carries out a performance analysis of a vapor compression cycle (VCC) driven by organic Rankine cycle (ORC) utilizing low-temperature heat source in the form of sensible heat. The ORC is assumed to produce minimum net work which is required to drive the VCC without generating an excess electricity. Effects of important system parameters such as turbine inlet pressure, condensing temperature, and evaporating temperature on the system variables such as mass flow ratio, net work production, and coefficient of performance (COP) are thoroughly investigated. The effect of choice of working fluid on COP is also considered. Results show that net work production and COP increase with increasing turbine inlet pressure or decreasing condensing temperature. Out of the five kinds of organic fluids considered $C_4H_{10}$ gives a relatively high COP in the range of low turbine inlet pressure.

The Performance Analysis of Multi Stage Reheater Organic Rankine Cycle According to Heat Sink Temperature Change (냉열원 온도 변화에 따른 다단재열랭킨사이클의 성능해석)

  • Lee, Ho-Saeng;Lim, Seung-Taek;Kim, Hyeon-Ju
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.11-17
    • /
    • 2016
  • In this study, the simulation for performance comparison between basic single stage organic rankine cycle, multi stage reheater cycle and multi stage reheater & recuperator cycle was carried out. The multi stage reheater cycle and multi stage reheater & recuperator cycle was designed to improve the efficiency for organic rankine cycle using heat source from industrial waste heat and heat sink from deep ocean water. R245fa was selected as a refrigerant for the cycle and system efficiencies were simulated by the variation of the heat sink temperature and the cycle classification. Performance characteristics were simulated by using the Aspen HYSYS. It was confirmed that the system efficiency was decreased by the increase of heat sink temperature. These results can be considered to be applied as geo-ocean thermal energy conversion in where plenty of geothermal or ocean thermal resource exist.

Performance analysis of an organic Rankine cycle for waste heat recovery of a passenger car (승용차 폐열 회수용 유기 랭킨 사이클 성능 분석)

  • Kim, Hyun-Jin;Moon, Je-Hyeon;Yu, Je-Seung;Lee, Young-Sung
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.87-94
    • /
    • 2013
  • Applicability of organic Rankine cycle for a passenger car with 3.5 L gasoline engine to convert low grade waste heat to useful shaft power has been numerically studied. Working fluid is R134a, and the Rankine cycle is composed of boiler for recovering engine cooling water heat, super heater for recovering exhaust gas heat, scroll expander for converting waste heat to shaft power, condenser for heat emission, internal heat exchanger, and feed pump. Assuming efficiencies of 90% for the heat exchangers, 75% for the scroll expander, and 80% for the feed pump, the Rankine cycle efficiency of 5.53% was calculated at the vehicle speed of 120 km/hr. Net expander shaft output after subtracting the power required to run the pump was 3.22 kW, which was equivalent to 12.1% improvement in fuel consumption. About the same level of improvement in the fuel consumption was obtained over the vehicle speed range of 60 km/hr~120 km/hr.

Thermodynamic Performance Analysis of Regenerative Organic Rankine Cycle using Turbine Bleeding (터빈 추기를 이용한 재생 유기랭킨사이클의 열역학적 성능 해석)

  • KIM, KYOUNG HOON;HWANG, SEON;KIM, MAN-HOE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.4
    • /
    • pp.377-385
    • /
    • 2015
  • This paper presents a thermodynamic performance analysis of regenerative organic Rankine cycle (ORC) using turbine bleeding to utilize low-grade finite thermal energy. Refrigerant R245fa was selected as the working fluid. Special attention is paid to the effects of the turbine bleeding pressure and the turbine bleed fraction on the thermodynamic performance of the system such as net power production and thermal efficiency. Results show that the thermal efficiency has an optimum value with respect to the turbine bleeding pressure and the net power production is lower than the basic ORC while the thermal efficiency is higher.

A Study on Performance comparison of two-size Tesla Turbines Application in Organic Rankine Cycle Machine

  • Thawichsri, Kosart;nilnont, Wanich
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.67-76
    • /
    • 2015
  • This paper aims to study and design of Organic Rankine Cycle (ORC) Machine using Isopentane as working fluid expanding through Tesla turbine. The study on ORC machine expanding through Tesla turbine has result on the efficiency of Tesla turbine. In addition, Thermodynamics theory on isentropic efficiency proved to be a successful method for overcoming the difficulties associated with the determination of very low torque at very high angular speed. By using an inexpensive experiment device and a simple method, the angular acceleration method, for measuring output torque and power in a Tesla turbine is able to predict a tendency of output work. The experiments using two Tesla turbine sizes, the first size is 1.6 bigger than the second one. In comparison with the first size, the tesla turbine can produce power output more than 62% of the second size. Further study on the machine can be developed throughout the county due to its low cost and efficiency.

A comparing on the use of Centrifugal Turbine and Tesla Turbine in an application of Organic Rankine Cycle

  • Thawichsri, Kosart;nilnont, Wanich
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.58-66
    • /
    • 2015
  • This paper aims to compare the use of Centrifugal Turbine and Tesla Turbine in an application of Organic Rankine Cycle (ORC) Machine using Isopentane as working fluid expanding. The working fluid has boiling point below boiling water and works in low-temperature sources between $80-120^{\circ}C$ which can be produced from waste heat, solar-thermal energy and geothermal energy etc. The experiment on ORC machine reveals that the suitability of high pressure pump for working fluid has result on the efficiency of work. In addition, Thermodynamics theory on P-h diagram also presented the effect of heat sources' temperature and flow rate on any work. Thus, the study and design on ORC machine has to concern mainly on pressure pump, flow rate and optimized temperature. Result experiment and calculate ORC Machine using centrifugal Turbine efficiency better than Tesla turbine 30% but Tesla Turbine is cheaper and easily structure. Further study on the machine can be developed throughout the county due to its low cost and efficiency.