• Title/Summary/Keyword: Organic PV cell

Search Result 10, Processing Time 0.101 seconds

Optical Simulation Study on Indoor Organic Photovoltaics with Textured Electrodes towards Self-powered Photodetector

  • Biswas, Swarup;Kim, Hyeok
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.236-239
    • /
    • 2019
  • In this work, we performed an optical simulation study on the performance of a PMDPP3T:PCBM based on an organic photovoltaic (PV) device. The virtual PV device was developed in Lumerical, finite-difference time-domain (FDTD) solutions. Different layers of the PV cell have been defined through the incorporation of complex refractive index value of those layers' constituent materials. During the simulation study, the effect of the variation active layer thickness on an ideal short circuit current density ($J_{sc,ideal}$) of the PV cell has been, first, observed. Thereafter, we have investigated the impact of surface roughness of a transparent conducting oxide (TCO) electrode on $J_{sc,ideal}$ of the PV cells. From this simulation, it has been observed that the $J_{sc,ideal}$ value of the PV cell is strongly dependent on the thickness of its active layer and the photon absorption of the PV cell has gradually decreased with the increment of the TCO's surface roughness. As a result, the capability of the PV device has been reduced with the increment of the surface roughness of the TCO.

Fabrication and Characterization of Electro-photonic Performance of Nanopatterned Organic Optoelectronics

  • Nil, Ri-Swi;Han, Ji-Yeong;Gwon, Hyeon-Geun;Lee, Gyu-Tae;Go, Du-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.134.2-134.2
    • /
    • 2014
  • Photonic crystal solar cells have the potential for addressing the disparate length scales in polymer photovoltaic materials, thereby confronting the major challenge in solar cell technology: efficiency. One must achieve simultaneously an efficient absorption of photons with effective carrier extraction. Unfortunately the two processes have opposing requirements. Efficient absorption of light calls for thicker PV active layers whereas carrier transport always benefits from thinner ones, and this dichotomy is at the heart of an efficiency/cost conundrum that has kept solar energy expensive relative to fossil fuels. This dichotomy persists over the entire solar spectrum but increasingly so near a semiconductor's band edge where absorption is weak. We report a 2-D, photonic crystal morphology that enhances the efficiency of organic photovoltaic cells relative to conventional planar cells. The morphology is developed by patterning an organic photoactive bulk heterojunction blend of Poly(3-(2-methyl-2-hexylcarboxylate) thiophene-co-thiophene) and PCBM via PRINT, a nano-embossing method that lends itself to large area fabrication of nanostructures. The photonic crystal cell morphology increases photocurrents generally, and particularly through the excitation of resonant modes near the band edge of the organic PV material. The device performance of the photonic crystal cell showed a nearly doubled increase in efficiency relative to conventional planar cell designs. Photonic crystals can also enhance performance of other optoelectronic devices including organic laser.

  • PDF

Decomposition of EVA(Ethylene vinyl acetate) used as an adhesion of photovoltaic(PV) module by ultrasonic irradiation in bath-type cleaner (Bath-type 초음파(超音波) 세척기(洗滌器)를 이용(利用)한 태양전지모듈 접착제(接着劑) EVA(Ethylene Vinyl Acetate) 분해특성(分解特性))

  • Kim, Young-Jin;Lee, Jae-Ryeong
    • Resources Recycling
    • /
    • v.20 no.6
    • /
    • pp.50-55
    • /
    • 2011
  • Using ultrasonic irradiation, the separation and recovery of PV cell, made of silicon wafer, from PV module was carried out through selective decomposition of EVA used as an interlaminated binder. The ultrasonic cleaner of bath-type (Output: 130 W, Frequency: 40 kHz) was used as an ultrasonic apparatus in this research. With the fixed distance of 2 cm, from ultrasonic generator to PV cell, the experiment of EVA decomposition was performed in various organic solvents such as Toluene, Trichloroethylene, O-dichlorobenzene, Benzene. And also their concentrations and temperature was changed to survey the optimum conditions. However EVA can be decomposed perfectly at $55^{\circ}C$ within 160 min in 5 M of all kinds of solvent, PV cell may be recovered with being damaged or broken severely. This damage may be resulted from the swelling of EVA in the process of decomposition. Whereas, at the condition of 5 M at $65^{\circ}C$, PV cell can be recovered with the state of minor damage or crack. This implies that the decomposition rate of EVA increases with an increase of temperature, thereby EVA can be decomposed before the swelling of EVA layer. Conclusively, it is possible for PV cell to be recovered within 40 min, at $65^{\circ}C$ in 5 M, with less damage.

Antibacterial Activity of Streptomyces sp. J46 against Bacterial Shot Hole Disease Pathogen Xanthomonas arboricola pv. pruni (Streptomyces sp. J46의 세균성구멍병원균 Xanthomonas arboricola pv. pruni에 대한 항균 활성)

  • Lee, Jeong Eun;Lim, Da Jung;Kim, In Seon
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.20-32
    • /
    • 2021
  • BACKGROUND: Bacterial shot hole of stone fruits is a seriuos plant disease caused by Xanthomonas arboricola pv. pruni (Xap). Techniques to control the disease are required. In this study, microorganisms with antibacterial activity were isolated to develop as a microbial agent against the bacterial shot hole. METHODS AND RESULTS: An isolate with the strongest activity among the isolates was identified as Streptomyces avidinii based on 16S rRNA gene sequence analysis and designated Streptomyces sp. J46. J46 showed suppression of bacterial leaf spot with a control value of 90% at 10 times-diluted cell free supernatant. To investigate antibacterial metabolites produced by J46, the supernatant of J46 was extracted with organic solvents, and the extracts were subjected to chromatography works. Antibacterial metabolites were not extractable with organic solvents. Both reverse and normal phase techniques were not successful because the metabolites were extremely water soluble. The antibacterial metabolites were not volatiles but protein compounds based on hydrolysis enzyme treatment. CONCLUSION: Our study suggests that Streptomyces sp. J46 may be a potential as an microbial agent against bacterial shot hole. Further study to identify the metabolites is required in more detail.

유기태양전지 연구 동향

  • Kim, Gyeong-Gon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.20-20
    • /
    • 2010
  • Organic based photovoltaics (OPV) have been received a lot of attention because they are lightweight, inexpensive to fabricate and flexible compare to crystalline Si solar cells. In this seminar, several important progresses in the Polymer PV, such as, formation of bulk heterojunction, development of post annealing technique, tandem cell fabrication will be introduced. In addition that, some efforts to achieve the further improvement in the performance of the Polymer PV will be discussed.

  • PDF

Enhancement in solar cell efficiency by luminescent down-shifting layers

  • Ahmed, Hind A.;Walshe, James;Kennedy, Manus;Confrey, Thomas;Doran, John;McCormack, Sarah.J.
    • Advances in Energy Research
    • /
    • v.1 no.2
    • /
    • pp.117-126
    • /
    • 2013
  • In this paper, core-shell semiconductor quantum dots (QDs) CdSeS/ZnS with emission at 490 nm and 450 nm were investigated for their use in luminescent down-shifting (LDS) layers. Luminescent quantum yield (LQY) of the QDs measurements in solution proposed that they were suitable candidates for inclusion in LDS layers. QDs were encapsulated in poly(methyl,methacrylate) (PMMA) polymer matrix and films were fabricated of $134{\pm}0.05$ microns. Selections of organic dyes from BASF Lumogen F range were also investigated for their use as LDS layers; Violet 570 and Yellow 083. The addition of LDS layers containing Violet 570 dye demonstrated a unity LQY when encapsulated within a PMMA matrix. A PV device of an LDS layer of Lumogen Violet 570 deposited on top of a crystalline silicon cell was fabricated where it was demonstrated to increase the efficiency of the cell by 34.5% relative.

Photovoltaic Properties of Poly[(9,9-dioctylfluorenyl-2,7-vinylene )-co-{2-(3'-dimethyldodecylsilylphenyl)-1,4-phenylenevinylene}] for Electro-Active Devices

  • Jin Sung-Ho;Shim Jong-Min;Jung, Seung-Jin;Kim, Sung-Chul;Naidu B. Vijaya Kumar;Shin, Won-Suk;Gal Yeong-Soon;Lee, Jae-Wook;Kim, Ji-Hyeon;Lee, Jin-Kook
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.524-529
    • /
    • 2006
  • New, thermally robust, arylenevinylene conjugated polymers, including poly(9,9-dioctylfluorenyl-2,7-vinylene) [poly(FV)] and poly[2-(3'-dimethyldodecylsilylphenyl)-1,4-phenylenevinylene] [poly(m-SiPhPV)], were synthesized and used for the fabrication of efficient photovoltaic cells. Bulk heterojunction photovoltaic cells fabricated by blending one of the polymers, [poly(FV)], [poly(m-SiPhPV)], and poly(FV-co-m-SiPhPV), with the fullerene derivative [6,6]-phenyl-$C_{61}$-butyric acid methyl ester (PCBM) were found to have a power conversion efficiency of up to 0.038%..

Study for Recovery Silicon and Tempered Glass from Waste PV Modules (태양전지(太陽電池) 폐(廢) 모듈로부터 실리콘 및 강화(彈化)유리 회수(回收)에 관(關)한 연구(硏究))

  • Kang, Suk-Min;Yoo, Sung-Yeol;Lee, Jin-A;Boo, Bong-Hyun;Ryu, Ho-Jin
    • Resources Recycling
    • /
    • v.20 no.2
    • /
    • pp.45-53
    • /
    • 2011
  • We devised a procedure for the recovery of silicon and tempered glass from waste photovoltaic (PV) modules using optimized conditions. The tempered glass was recovered without any damage using organic solvents. The surface material is removed by applying an acid solution on the surface of the PV cell. Through our proposed method, we offer a much more efficient approach for recycling solar cells with a surfactant than the conventional method. This process, we obtained pure silicon with a yield of 90% by chemical treatment with the surfactant at room temperature for 18 min. The silicon yield was characterized using an inductively coupled plasma-atomic emission spectrometer.

In Vitro Screening of Tannic Acid-based Eco-friendly Farming Material (notice no. 2-4-064) against Plant Pathogenic Bacteria (탄닌산을 함유한 친환경농자재(공시번호 2-4-064)의 식물병원세균 기내 억제효과)

  • Han, Kyu Suk;Ju, Ho-Jong;Hong, Jin Sung;Chung, Jong-Sang;Park, Duck Hwan
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.4
    • /
    • pp.945-955
    • /
    • 2016
  • To date, chemical managements of plant bacterial diseases are complicated by limitations on use of antibiotics in agriculture, antibiotic resistance development, and limited efficacy of alternative control agents. In this study, thus, we performed screening of eco-friendly farming material (notice no. 2-4-064) containing tannic acid as new antibacterial-activity against 7 plant bacterial pathogens: Pectobacterium carotovorum subsp. carotovorum (Pcc), Ralstonia solanacearum (Rs), Acidovorax avenae subsp. citrulli (Aac), Xanthomonas cirti pv. citri (Xcc), Erwinia pyrifoliae (Ep), Clavibacter michiganensis subsp. michiganensis (Cmm), and Streptomyces scabies (Sc), Initial screening of antibacterial effects of eco-friendly farming material was performed using the paper disk diffusion method and co-cultivation in broth culture. Tannic acid based eco-friendly farming material showed inhibitory effect against Pcc, Rs, Aac, Xcc, Cmm, and Ss, whereas it did not show inhibition zone against Ep. However, when it tested by co-cultivation in broth culture, it showed strong inhibition effect against all pathogens that declined growth curve compared to bacterial pathogen only. Interestingly, when we observed morphological changes on those pathogens by SEM, cell morphologies of 7 pathogens were slightly changed that seem to be malfunction in their cell envelope.

Graphene Quantum Dot Interfacial Layer for Organic/Inorganic Hybrid Photovoltaics Prepared by a Facile Solution Process (용액 공정을 통한 그래핀 양자점 삽입형 유/무기 하이브리드 태양전지 제작)

  • Kim, Youngjun;Park, Byoungnam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.646-651
    • /
    • 2018
  • This paper reports that the electronic properties at a $P3HT/TiO_2$ interface associated with exciton dissociation and transport can be tailored by the insertion of a graphene quantum dot (GQD) layer. For donor/acceptor interface modification in an $ITO/TiO_2/P3HT/Al$ photovoltaic (PV) device, a continuous GQD film was prepared by a sonication treatment in solution that simplifies the conventional processes, including laser fragmentation and hydrothermal treatment, which limits a variety of component layers and involves low cost processing. The high conductivity and favorable energy alignment for exciton dissociation of the GQD layer increased the fill factor and short circuit current. The origin of the improved parameters is discussed in terms of the broad light absorption and enhanced interfacial carrier transport.