• 제목/요약/키워드: Organic PCM

검색결과 18건 처리시간 0.036초

수정된 T-history 법을 이용한 유기 상전이 물질들의 열 물성 측정 (Measurement of Thermo-physical Properties of Organic Phase Change Materials using Modified T-history Method)

  • 다오 반 둥;최홍기;최호석;오준택;김종국
    • Korean Chemical Engineering Research
    • /
    • 제48권1호
    • /
    • pp.93-97
    • /
    • 2010
  • 본 연구에서는 수정된 T-history 법을 사용하여 백신 또는 의약품들의 수송 시 냉매로 사용될 수 있는 $0{\sim}15^{\circ}C$의 상전이 온도를 갖는 유기 상전이 소재들과 이중 두 물질의 혼합물들의 열용량, 잠열, 비열과 같은 열 물성을 측정하였다. 순수한 파라핀들을 측정한 결과, 각 물질들의 상전이 온도를 고려하여 최적의 냉각 속도를 유지하며 측정을 하는 것이 열물성의 신뢰성을 향상시킬 수 있음을 알 수 있었고, 특히 혼합물의 열 물성 측정에 적용할 경우, 수정된 T-history 법의 사용은 기존의 DSC 분석에 사용하는 시료의 양이 소량이므로 유발될 수 있는 결과의 부정확성 등의 문제점을 해결하는데 기여할 수 있음을 알 수 있었다.

슬레이트 지붕 노후화에 따른 석면 섬유 방출량 (Releasing of asbestos fibers from the weathered asbestos cement slate roofing)

  • 김현욱;박계영;한진구;한영선;황범구;이준혁
    • 한국산업보건학회지
    • /
    • 제20권2호
    • /
    • pp.88-93
    • /
    • 2010
  • To confirm and quantify asbestos fibers released from the asbestos-cement slate roofs due to weathering, three houses, selected based on the year of built - 60's, 70, and 80's, were investigated. All of them were located in the downtown of Seoul. Rain or snow-melt water was collected from the roof in a 3.5 liter plastic bottle. A known amount of collected water was filtered on the 37 mm membrane filter, ashed in a muffle furnace, and subsequently treated with HCl to remove organic material. The treated remaining was refiltered on a 25mm membrane filter for PLM and PCM analyses. The NIOSH 7400 method was utilized for PCM counting. In addition, SEM/EDX was used to confirm the asbestos types. The results of this study showed that chrysotile fibers were confirmed by PLM in all samples analyzed. A significant amount of asbestos fibers were found in the water samples. The ranges of asbestos fibers counted from the samples collected in the 60's, 70's, and 80's were; 10,406.3~55,575.6 f/L, 5,218.8~38,126.2 f/L, and 2,906.3~7,798.6 f/L, respectively. As anticipated, concentrations of asbestos fibers increased with time of installment of the roofing material. We conclude that weathering can be a significant factor on the release of asbestos fibers from the asbestos cement products. Since asbestos fibers released into environment can be a source of significant health hazard, countermeasures, such as replacement, removal, and encapsulation of weathered asbestos slate, should be initiated immediately.

건축물 축열성능 향상을 위한 Octadecane/xGnP SSPCM 제조 및 열적성능 분석 (Preparation and Thermal Properties of Octadecane/xGnP Shape-Stabilized Phase Change Materials to Improve the Heat Storage Performance of Buildings)

  • 김석환;정수광;이정훈;김수민
    • 설비공학논문집
    • /
    • 제25권3호
    • /
    • pp.126-130
    • /
    • 2013
  • In this study, a shape-stabilized phase change material (SSPCM) was prepared by octadecane and exfoliated graphite nanoplate (xGnP) in a vacuum, to improve thermal storage performance. The octadecane as an organic phase change material (PCM) is very stable against phase separation of PCM, and has the proper temperature range for thermal comfort in the building; and the xGnP is a porous carbon nano-material. Scanning electron microscope (SEM) and Fourier transformation infrared spectrophotometer (FT-IR) were used to confirm the chemical and physical stability of the Ocatadecane/xGnP SSPCM. In addition, thermal properties were determined by Deferential scanning calorimeter (DSC), and Thermogravimetric analysis (TGA). The specific heat of Octadecane/xGnP SSPCM was $14.1J/g{\cdot}K$ at $31.3^{\circ}C$. The melting temperature ranges of melting and freezing were found to be $26{\sim}35^{\circ}C$ and $26{\sim}19^{\circ}C$, respectively. At this time, the latent heats of melting and freezing were 110.9 J/g and 104.5 J/g, respectively. The Octadecane was impregnated into xGnP by as much as about 56.0% of the Octadecane/xGnP SSPCM's mass fraction.

축열건축자재 적용을 위한 Hexadecane/xGnP SSPCM 제조 및 열적특성 (Preparation and Thermal Characteristics of Hexadecane/xGnP Shape-stabilized Phase Change Material for Thermal Storage Building Materials)

  • 김석환;정수광;임재한;김수민
    • 한국태양에너지학회 논문집
    • /
    • 제33권1호
    • /
    • pp.73-78
    • /
    • 2013
  • Hexadecane and exfoliated graphite nanoplate (xGnP)composite was prepared as a shape-stabilized phase change material (SSPCM) in a vacuum to develope thermal energy storage. The Hexadecane as an organic phase change material (PCM) is very stable against phase separation of PCM and has a melting point at $18^{\circ}C$ that is under the thermally comfortable temperature range in buildings. The xGnP is a porous carbon nanotube material with high thermal conductivity. Scanning electron microscope (SEM) and Fourier transformation infrared spectrophotometer (FT-IR)were used to confirm the chemical and physical stability of Hexadecane/xGnP SSPCM. In addition, thermal properties were determined by Deferential scanning calorimeter(DSC) and Thermogravimetric analysis (TGA). The specific heat of Hexadecane/xGnPSSPCM was $10.0J/g{\cdot}K$ at $21.8^{\circ}C$. The melting temperature range of melting and freezing were found to be $16-25^{\circ}C$ and $17-12^{\circ}C$. At this time, the laten heats of melting and freezing were 96.4J/g and 94.8J/g. The Hexadecane was impregnated into xGnP as much about 48.8% of Hexadecane/xGnP SSPCM's mass fraction.

상전이 물질을 함유하는 수분산 PU에서 계면활성제의 효과 (Effects of Several Surfactants in the WBPU/Octadecane as a Phase Change Material)

  • Jang, Jae-Hyuk;Lee, Young-Hee;Kim, Han-Do
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.287-288
    • /
    • 2003
  • Polyurethane(PU) materials have been generally used in the automobile, paint, furniture, adhesive, and textile industries. The use of Waterborne PU was motivated form the environmental point of view, i.e. reduction of solvent emissions into the atmosphere(volatile organic compounds, VOC)[1]. Generally speaking, phase change materials (PCM) have the capability of absorbing or releasing thermal energy to reduce or eliminate heat transfer at the temperature range of the particular temperature stabilizing material[2]. (omitted)

  • PDF

파라핀과 초고분자량 폴리에틸렌으로 구성된 형태안정성 상 전이 물질의 제조 및 특성 (Preparation and Properties of Shape-Stabilized Phase Change Materials from UHMWPE and Paraffin Wax for Latent Heat Storage)

  • 이현석;박재훈;임종하;서혜진;손태원
    • 폴리머
    • /
    • 제39권1호
    • /
    • pp.23-32
    • /
    • 2015
  • 상 전이 물질인 파라핀 왁스를 초고분자량 폴리에틸렌(UHMWPE)과의 absorption method를 통해 파우더를 제조 후 hot press를 사용하여 형태안정성 상 전이 물질(SSPCM) composite를 제조하였다. SSPCM composite의 화학, 미세구조, 형태, 열적, 결정구조, 유변학적 특성을 조사하기 위하여 FTIR, SEM, DSC, XRD, ARES 측정을 하였다. FTIR 분석결과 파라핀 및 UHMWPE의 고유 피크들이 나타나고 있는 것을 확인하였고, SEM 분석결과 파라핀의 농도가 40 wt%까지는 표면이 상당히 팽윤되며 거친 특성을 나타냄을 확인할 수 있었고, DSC 분석결과 SSPCM에서 파라핀 및 UHMWPE의 고유 융점들이 나타났고, XRD 분석에서는 파라핀과 UHMWPE의 $2{\theta}$ 값들이 SSPCM에서도 나타남을 확인할 수 있었고, ARES 분석에서는 파라핀 농도에 따른 G', G", $tan{\delta}$ 값의 변화를 확인할 수 있었다. 종합적인 분석 결과를 통해, 파라핀의 농도가 30 wt%일 때, 형태안정성 측면에서 최적의 농도임을 확인할 수 있었다.

설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제27권7호
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제26권12호
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.