• 제목/요약/키워드: Organic Light Emitting Diodes (OLEDs)

검색결과 350건 처리시간 0.026초

ALD 공정을 이용한 플렉시블 유기태양전지용 투명전극 형성 (Fabrication of a Transparent Electrode for a Flexible Organic Solar Cell in Atomic Layer Deposition)

  • 송근수;김형태;유경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.121.2-121.2
    • /
    • 2011
  • Aluminum-doped Zinc Oxide (AZO) is considered as an excellent candidate to replace Indium Tin Oxide (ITO), which is widely used as transparent conductive oxide (TCO) for electronic devices such as liquid crystal displays (LCDs), organic light emitting diodes (OLEDs) and organic solar cells (OSCs). In the present study, AZO thin film was applied to the transparent electrode of a channel-shaped flexible organic solar cell using a low-temperature selective-area atomic layer deposition (ALD) process. AZO thin films were deposited on Poly-Ethylene-Naphthalate (PEN) substrates with Di-Ethyl-Zinc (DEZ) and Tri-Methyl-Aluminum (TMA) as precursors and $H_2O$ as an oxidant for the atomic layer deposition at the deposition temperature of $130^{\circ}C$. The pulse time of TMA, DEZ and $H_2O$, and purge time were 0.1 second and 20 second, respectively. The electrical and optical properties of the AZO films were characterized as a function of film thickness. The 300 nm-thick AZO film grown on a PEN substrate exhibited sheet resistance of $87{\Omega}$/square and optical transmittance of 84.3% at a wavelength between 400 and 800 nm.

  • PDF

Preparation of Novel Fused Ring Spiro[benzotetraphene-fluorene] Derivatives and Application for Deep-Blue Host Materials

  • Kim, Min-Ji;Lee, Chil-Won;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1639-1646
    • /
    • 2014
  • A series of novel fused-ring spiro compounds, spiro[benzo[ij]tetraphene-7,9'-fluorene] (SBTF) derivatives containing an end-capping aryl substituent at both the C3 and C10-positions hasbeen designed and synthesized via multi-step Suzuki coupling reactions. 3-(1-Naphthyl)-10-phenylSBTF (1N-PSBTF), 3-(2-naphthyl)-10-phenylSBTF (2N-PSBTF) and 3-[4-(1-naphthyl)phenyl]-10-phenylSBTF (NP-PSBTF) showed improved glass transition temperatures ($T_g$) with good thermal stability. Their photophysical, electrochemical, and electroluminescent properties were investigated and were used to construct blue organic light emission diodes (OLEDs). The typical OLED devices showed excellent performance; the NP-PSBTF-based device exhibited highly efficient deep blue-light emission with a maximum efficiency of 5.27 cd/A (EQE, 4.63%) with CIE (x = 0.133, y = 0.144). According to these characteristics, these deep-blue light emitting materials have sufficient potential for fluorescent OLED applications.

청색 인광물질을 이용한 유기 발광 다이오드의 효율개선에 관한 연구 (A study on the improvement in the efficiency of blue phosphorescent organic light-emitting diodes)

  • 양미연;김준호;하윤경;김영관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1070-1073
    • /
    • 2004
  • In this study, Tri(1-phenylpyrazolato)iridium $(Ir(ppz)_3)$ was prepared for the pure blue phosphorescent dopant and various host materials were used for the appropriate energy alignment. Although the luminance was pure blue with the CIE coordinates of x = 0.158, y = 0.139, device efficiencies didn't improve yet. Instead of finding the proper host materials, the alteration of structure of OLEDs affected the improvement of electrical and optical characteristics of the devices. It was worthy that insertion the exciton formation zone with the host material between the emitting zone and the exciton blocking layer. The device with a structure of ITO/NPB/Ir(ppz)3 doped in CBP/CBP for the exciton formation zone/BCP/Liq/Al was fabricated and the characteristics were observed compared with the devices without the exciton formation zone. When CBP was used for the exciton formation zone, the device efficiency reached to over 0.25 cd/A. While the device used CBP only for the host showed the luminous efficiency of under 0.11 cd/A

  • PDF

2개의 형광 도판트를 적용한 단일발광층 유기발광소자의 광학적 특성 연구 (Study on Optical Characteristics of Organic Light-emitting Diodes Using Two Fluorescence Dopants in Single Emissive Layer)

  • 김태구;오환술;김유현;김우영
    • 한국진공학회지
    • /
    • 제19권3호
    • /
    • pp.184-189
    • /
    • 2010
  • 두 가지의 형광도판트를 이용하여 제작된 단일 발광층 유기발광다이오드(OLEDs)는 ITO / NPB ($700{\AA}$) / MADN : C545T - 1.0% : DCJTB - 0.3% ($300{\AA}$) / Bphen ($300{\AA}$>) / LiF ($10{\AA}$) / Al ($1,000{\AA}$)으로 구성되었다. C545T와 DCJTB는 각각 녹색과 적색 도판트로 사용되었고, 호스트 물질인 MADN에 대해서 각각 다른 농도로 도핑하였다. 이러한 두 가지 형광도 판트를 사용한 제적화된 OLED는 8.42 cd/A의 효율과 6 V에서 $3169 cd/m^2$의 발광 휘도와 (0.43, 0.50)의 색좌표를 가졌다. 이러한 OLED 구조의 electroluminescence는 각각 C545T와 DCJTB에 따라 500 nm와 564 nm의 피크를 가졌다. 이러한 결과는 MADN에서 C545T로 C545T에서 DCJTB로 포스터 에너지 전이가 일어났음을 설명할 수 있다.

새로운 층을 삽입한 고효율 고발광의 OLEDs 제작 및 그 특성 (Improvement of efficiency and brightness by insertion of the novel layer in OLEDs)

  • 김영민;이주원;박정수;배성진;백경갑;장진;성만영;주병권;김재경
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.108-111
    • /
    • 2004
  • An efficiency and brightness of the Organic Light-emitting Diodes(OLEDs) by insertion of the novel layer between a singlet emitter and an electron transporting layer without doping processes, has been improved. The novel layers named as the K-M1 and K-M2 layers have shown the excellent improvement in the carrier balance and recombination efficiency. New devices using the K-M1 and K-M2 layers have shown a high efficiencies of over 15cd/A and 61m/W$(at\;20mA/cm^2)$, and brightness of over $16,000cd/m^2(at\;100mA/cm^2)$, respectively.

  • PDF

RGB OLED의 전기적 특성 분석 (Electrical characteristics of RGB OLED)

  • 유지홍;한재호;최병덕
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.281-281
    • /
    • 2009
  • Electrical analysis of red, green and blue (RGB) organic light emitting diode (OLED), which were measured at various temperatures from 230K to 370K by steps of 20K, were investigated using current-voltage(I-V) characteristics. Ideality factor and series resistance were obtained from the thermionic emission theory. Experimental results showed that the ideality factors were 2.12 for red, 3.80 for green, and 6.03 for blue OLED at 290K, respectively. The series resistance were 1960, 2190, 2630$\Omega$ for red, green and blue OLED at the same temperature. It was found that the OLED ideality factors were much higher than near unity for well-behaved silicon diodes, because of the organic material and multi-layer fabrication diode. In addition, the series resistance was near 2k$\Omega$ range. More researches are required to reduce both ideality factors and series resistance to increase the efficiency of OLEDs.

  • PDF

정공수송층에 따른 백색 OLED의 발광 특성 (Emission Characteristics of White OLEDs with Various Hole Transport Layers)

  • 임병관;서정현;주성후;백경갑
    • 한국전기전자재료학회논문지
    • /
    • 제23권12호
    • /
    • pp.983-987
    • /
    • 2010
  • In order to investigate the emission characteristics of the phosphorescent white organic light-emitting diodes (PHWOLEDs) according to various hole transport layers (HTLs), PHWOLEDs composed of HTLs whose structure are NPB/TCTA, NPB/mCP and NPB/TCTA/mCP, two emissive layers (EMLs) which emit two-wavelengths of light (blue and red), and electron transport layer were fabricated. The applied voltage, power efficiency, and external quantum efficiency at a current density of $1 mA/cm^2$ for the fabricated PHWOLEDs were 7.5 V, 11.5 lm/W, and 15%, in case of NPB/mCP, 5 V, 14.8 lm/W, and 13.7%, in case of NPB/TCTA, and 5.5 V, 14.6 lm/W, and 15%, in case of NPB/TCTA/mCP in the hole transport layer, respectively. High emission efficiency can be obtained when the amount of hole injection from anode is balanced out by the amount of electron injection from the cathode to EML by using NPB/TCTA/mCP structured HTL.

고효율 $CBP:Ir(ppy)_3$-PhOLEDs의 제작과 특성 연구 (Fabrication and Characterization of High Efficiency CBP:Ir(ppy)_3$-PhOLEDs)

  • 장지근;신상배;신현관;안종명;장호정;유상욱
    • 마이크로전자및패키징학회지
    • /
    • 제15권2호
    • /
    • pp.1-6
    • /
    • 2008
  • 고효율 녹색 인광 유기발광다이오드를 개발하기 위해 소자 구조를 ITO/2-TNATA/NPB/TCTA/CBP:$7%Ir(ppy)_3$/BCP/SFC-137/LiF/Al로 설계 제작하고 그 전계발광 특성을 평가하였다. 소자 제작에서 발광 호스트의 두께를 $150{\AA}{\sim}350{\AA}$ 범위로 변화시켜, 전계발광 특성을 비교해 본 결과, CBP두께가 약 $300{\AA}$ 부근일 때 가장 우수한 휘도 특성이 얻어졌다 전류 효율은 CBP두께가 $300{\AA}{\sim}350{\AA}$범위일 때 거의 포화되어 최대로 나타났다. $CBP(300{\AA}):7%Ir(ppy)_3-EML$ 층을 갖는 PhOLED(phosphorescent organic light emitting diode)의 전류 밀도, 휘도, 그리고 전류 효율은 10V의 인가전압에서 각각 $40mA/cm^2,\;10000cd/m^2$, 25cd/A로 나타났다. 또한 이 소자의 최대 전류효율은 $160cd/m^2$의 휘도 상태에서 40.5cd/A로 나타났다. 발광 스펙트럼은 512nm의 중심 파장과 약 60nm의 FWHM(Full Width Half Maximum)을 나타내었으며, CIE (Commission Internationale de I'Eclairage)도표 상에서 색 좌표는 (0.28,0.63)으로 나타났다.

  • PDF

Characteristics of $Al_2O_3/TiO_2$ multi-layers as moisture permeation barriers deposited on PES substrates using ECR-ALD

  • 권태석;문연건;김웅선;문대용;김경택;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.457-457
    • /
    • 2010
  • Flexible organic light emitting diodes (F-OLEDs) requires excellent moisture permeation barriers to minimize the degradation of the F-OLEDs device. Specifically, F-OLEDs device need a barrier layer that transmits less than $10^{-6}g/m^2/day$ of water and $10^{-5}g/m^2/day$ of oxygen. To increase the life time of F-OLEDs, therefore, it is indispensable to protect the organic materials from water and oxygen. Severe groups have reported on multi-layerd barriers consisting inorganic thin films deposited by plasma enhenced chemical deposition (PECVD) or sputtering. However, it is difficult to control the formation of granular-type morphology and microscopic pinholes in PECVD and sputtering. On the contrary, atomic layer deoposition (ALD) is free of pinhole, highly uniform, conformal films and show good step coverage. Thus, $Al_2O_3/TiO_2$ multi-layer was deposited onto the polyethersulfon (PES) substrate by electron cyclotron resonance atomic layer deposition (ECR-ALD), and the water vapor transmission rates (WVTR) were measured. WVTR of moisture permeation barriers is dependent upon density of films and initial state of polymer surface. A significant reduction of WVTR was achieved by increasing density of films and by applying low plasma induced interlayer on the PES substrate. In order to minimize damage of polymer surface, a 10 nm thick $TiO_2$ was deposited on PES prior to a $Al_2O_3$ ECR-ALD process. High quality barriers were developed from $Al_2O_3$ barriers on the $TiO_2$ interlayer. WVTR of $Al_2O_3$ by introducing $TiO_2$ interlayer was recorded in the range of $10^{-3}g/m^2.day$ at $38^{\circ}C$ and 100% relative humidity using a MOCON instrument. The WVTR was two orders of magnitude smaller than $Al_2O_3$ barriers directly grown on PES substrate without the $TiO_2$ interlayer. Thus, we can consider that the $Al_2O_3/TiO_2$ multi-layer passivation can be one of the most suitable F-OLEDs passivation films.

  • PDF

발광층 내의 스페이서가 인광 OLED의 효율 및 발광 특성에 미치는 영향 (Effects of Spacer Inserted Inside the Emission Layer on the Efficiency and Emission Characteristics of Phosphorescent Organic Light-emitting Diodes)

  • 서유석;문대규
    • 한국전기전자재료학회논문지
    • /
    • 제27권6호
    • /
    • pp.377-382
    • /
    • 2014
  • We have investigated the effects of spacer layer inserted between blue and red doped emission layers on the emission and efficiency characteristics of phosphorescent OLEDs. N,N'-di-carbazolyl-3,5-benzene (mCP) was used as a host layer. Iridium(III)bis[(4,6-di-fluorophenyl)- pyridinato-N,$C^2$']picolinate (FIrpic) and tris(1-phenyl-isoquinolinato-$C^2$,N)iridium(III) [Ir(piq)3] were used as blue and red dopants, respectively. The emission layer structure was mCP (1-x) nm/mCP:$Ir(piq)_3$ (5 nm, 10%)/mCP (x nm)/mCP:FIrpic (5 nm, 10%). The thickness of mCP spacer layer was varied from 0 to 15 nm. The emission from $Ir(piq)_3$ and the efficiency of the device were dominated by energy transfer from mCP host and FIrpic molecules, and by diffusion of mCP host triplet excitons.