• Title/Summary/Keyword: Organic Fertilizer (100%)

Search Result 249, Processing Time 0.028 seconds

Determination of Water Retention Characteristics of Organic and Inorganic Substrates for Horticulture by European Standard Method (유럽표준배지분석법에 의한 원예용 유기·무기성 배지의 수분보유특성)

  • Kang, Ji-Young;Park, Soon-Nam;Lee, Hyun-Haeng;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.55-58
    • /
    • 2004
  • The objective of this study was to get information about water retention characteristics of horticultural substrates used in Korea determined by European standard method. Water retention curves were prepared at water volume (v/v, %) in relation to -10 cm, -50 cm, -100 cm water pressure head. Water retention curves showed different properties depending upon the type, the place of origin, particle size, and manufacturing processes of substrates. Peat and coir had easily available water content in the range of 30-40% and showed high water holding capacity, water buffering capacity, and aeration for plant growth. However, bark, sawdust and rice hull showed low water holding capacity about below 10%. The easily available water content of perlite and clay ball was low about 0.1-13.8%, whereas that of vermiculite and rockwool granulate was high about 25.9-52.0%. Understanding water retention characteristics of growing substrates is very important in cstablisliing optimum condition for plant growth. Further study on water retention curves for more substrates, mixture and growing media is needed.

Genesis and Classification of the Red-Yellow Podzolic soils derived from Residuum on Acidic and Intermediate Rocks -Vol. 1 (Jeonnam series) (산성암(酸性岩) 및 중성암(中性岩)의 잔적층에 발달(發達)된 적황색토(赤黃色土)의 생성(生成) 및 분류(分類) -제(第) 1 보(報) (전남통(全南統)에 관(關)하여))

  • Um, Ki Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.4 no.2
    • /
    • pp.187-192
    • /
    • 1971
  • This paper deals mainly with the genesis and classification of the Jeonnam series. These soils have brown to dark brown silt loam and silty clay loam A horizon(strong brown or reddish brown where eroded). Argillic B horizons are dominantly red or yellowish red silty clay loam to silty clay with moderately developed subangular blocky structure and with thin clay cutans on the ped faces. The C horizons are strongly and very deeply weathered strong brown, yellowish brown, pale brown and reddish yellow silty clay loam and sandy loam granitic saprolite. Content of clay increases with depth to a maximum between 100cm. Percolating water seems to be responsible for transportation and oriented deposition of clay. Chemically, soil reaction is strongly acid to medium acid throughout the profile. The content of organic matter is 1 to 2 percent, and decreases regularly with depth. Base saturation is low, based on amount of extractable cations. Characterisltically the Jeonnam series are similar to Red-Yellow Podzolic soils of the United States and are similar to Red-Yellow soils of the Japan. In the writer's opinion the Jeonnam soils are classified as Red Yellow soils. According to USDA 7th approximation, this soil can be classified as Typic Hapludults and in the FAO/UNESCO World Soil Map as Helvic Acrisols.

  • PDF

Effects of Soil Conditioners Application on the Change of Soil Properties and Soybean Yield in a Sandy Loam Soil (사질(砂質)밭에서 토양개량제(土壤改良劑) 처리(處理)가 토양(土壤特性)과 대두수량(大豆收量)에 미치는 영향(影響))

  • Hur, Bong-Koo;Jo, In-Sang;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.4
    • /
    • pp.296-300
    • /
    • 1989
  • This study was carried out to evaluate the effects of clay loam soil, zeolite, and high molecular organic compounds on the improvement of soil physico-chemical properties and soybean yield in a sandy loam soil. Soybean was cultivated from 1987 to 1988. CEC, moisture retention of soil were increased, but soil bulk density and hardness were decreased by soil conditioners. Clay loam soil addition enhanced the soybean yield by 5% at 10ton 10a plot, 7% at 20ton/10a plot. Also zeolite application increased the soybean yield by 6~10%. Effects of soil conditioner application of the 1rst year were greater than that of 2nd year. Some experiments were conducted in laboratory for the effect of soil conditioners on soil physical properties. The nutrient and water holding capacity were highest by K-SAM treatment, but the soil aggregates was most stable by AN-905SH and Primal treatments.

  • PDF

Studies on the Use of Hilly Land (경사지(傾斜地) 및 산지이용(山地利用)에 관(關)한 연구(硏究))

  • Choi, Wun Kae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.1
    • /
    • pp.5-16
    • /
    • 1974
  • This study was carried out to judge the use of hilly land and Development. Data collected from detailed soil survey were analyzed for the study. The results obtained were as follows. 1. Only a few crops were cultivated on the residual soils and old alluvium soils, and the yield of these crops was low. The farmars in the area are pool. 2. The cultivated land in the study area comprises 58.4%. Soil conservation practices in this area were very poor. The 37.2% forest land in the area contained only a few trees and was gradually deteriorating because lack of management 3. The twelve soil series were investigated. There were various soils such as reddish brown and dark brown loam derived from residium, yellowish red and brown clay derived from old alluvium, and dark brown and grayish brown loam derived from narrow local valley alluvium. 4. The soil reaction of the old alluvial soils (pH 4.7 to 4.8) was more acid than that of the residual soil (5.0 to 5.2). The organic matter content of the old alluvial soils (3.3 to 3.6%) however, was higher than that of the residual soils (2.6 to 2.8%). The cation exchange capacity was 8 to 16 me/100g soil and was closely related to the content of organic matter, clay and silt. 5. The hill land was classified into sixteen land suitability groups by the soil characteristics. 6. There were significant differencies between the present land use and the recommended land use after the soil survey 7. The forest land was mainly converted to grass, nut tree, orchards and mulberry lands.

  • PDF

Mobility of Nitrate and Phosphate through Small Lysimeter with Three Physico-chemically Different Soils (소형 라이시메터시험을 통한 토양특성에 따른 질산과 인산의 이동성 비교)

  • Han, Kyung-Hwa;Ro, Hee-Myong;Cho, Hyun-Jun;Kim, Lee-Yul;Hwang, Seon-Woong;Cho, Hee-Rae;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.260-266
    • /
    • 2008
  • Small lysimeter experiment under rain shelter plastic film house was conducted to investigate the effect of soil characteristics on the leaching and soil solution concentration of nitrate and phosphate. Three soils were obtained from different agricultural sites of Korea: Soil A (mesic family of Typic Dystrudepts), Soil B (mixed, mesic family of Typic Udifluvents), and Soil C (artificially disturbed soils under greenhouse). Organic-C contents were in the order of Soil C ($32.4g\;kg^{-1}$) > Soil B ($15.0g\;kg^{-1}$) > Soil A ($8.1g\;kg^{-1}$). Inorganic-N concentration also differed significantly among soils, decreasing in the order of Soil B > Soil C > Soil A. Degree of P saturation (DPS) of Soil C was 178%, about three and fifteen times of Soil B (38%) and Soil A (6%). Prior to treatment, soils in lysimeters (dia. 300 mm, soil length 450 mm) were tabilized by repeated drying and wetting procedures for two weeks. After urea at $150kg\;N\;ha^{-1}$ and $KH_2PO_4$ at $100kg\;P_2O_5\;ha^{-1}$ were applied on the surface of each soil, total volume of irrigation was 213 mm at seven occasions for 65 days. At 13, 25, 35, 37, and 65 days after treatment, soil solution was sampled using rhizosampler at 10, 20, and 30 cm depth and leachate was sampled by free drain out of lysimeter. The volume of leachate was the highest in Soil C, and followed by the order of Soils A and B, whereas the amount of leached nitrate had a reverse trend, i.e. Soil B > Soil A > Soil C. Soil A and B had a significant increase of the nitrate concentration of soil solution at depth of 10 cm after urea-N treatment, but Soil C did not. High nitrate mobility of Soil B, compared to other soils, is presumably due to relatively high clay content, which could induce high extraction of nitrate of soil matrix by anion exclusion effect and slow rate of water flow. Contrary to Soil B, high organic matter content of Soil C could be responsible for its low mobility of nitrate, inducing preferential flow by water-repellency and rapid immobilization of nitrate by a microbial community. Leached phosphate was detected in Soil C only, and continuously increased with increasing amount of leachate. The phosphate concentration of soil solution in Soil B was much lower than in Soil C, and Soil A was below detection limit ($0.01mg\;L^{-1}$), overall similar to the order of degree of P saturation of soils. Phosphate mobility, therefore, could be largely influenced by degree of P saturation of soils but connect with apparent leaching loss only more than any threshold of P accumulation.

Taxonomical Classification of Namweon Series, Black Volcanic Ash Soils (흑색 화산회토인 남원통의 분류)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Sonn, Yeon-Kyu;Lim, Han-Cheol;Lee, Shin-Chan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.385-392
    • /
    • 2009
  • This study was conducted to reclassify Namweon series, black volcanic ash soils, in Jeju Island based on the second edition of Soil Taxonomy : A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Morphological properties of typifying pedon of Namweon series were investigated and physicochemical properties were analyzed according to Soil Survey Laboratory Methods Manual. The typifying pedon of Namweon series has black (10YR 2/1) silt loam Ap horizon (0~11 cm) and black (10YR 2/1) silt loam BA horizon (11~72 cm). Bw horizon (72~100 cm) is very dark brown (10YR 2/2) silt loam. That occurs on lava plain derived from volcanic ash materials. The typifying pedon contains 5.2~6.4% oxalate extractable (Al + 1/2 Fe), over 85% phosphate retention, and lower bulk density than $0.90Mg\;m^{-3}$. Ap, BA, and Bw horizons of the pedon have andic soil properties. That can be classified as Andisol. The typifying pedon has an udic soil moisture regime and has a 1,500 kPa water retention of 15% or more on air-dried samples throughout all horizons, and can be classified as Udand. Ap and BA horizons (0~72 cm) have a color value, moist, and chroma of 2 or less, melanic index of 1.70 or less, and 6% or more organic carbon. That meets the requirements of melanic epipedon. That keys out as Melanudand. That has more than 6.0% organic carbon and the colors of mollic epipedon throughout a layer 50 cm or more thick within 60 cm of the mineral soil surface.. Thus, that keys out as Pachic Melanudand. The pedon has a fine-earth fraction that has a water content at 1,500 kPa tension of 12% or more on air-dried samples and has less than 35% (by volume) rock fragments. Thus, the substitute for particle-size class is medial. That has a sum of 8 times the Si (percnt by weight extracted by acid oxalate) plus 2 times the Fe (percnt by weight extracted by acid oxalate) of 5 or more, and 2 times the Fe is more than 8 times the Si. Thus, the mineralogy class is ferrihydritic. Namweon series can be classified as medial, ferrihydritic, thermic family of Pachic Melanudands, not as ashy, thermic family of Typic Melanudands.

Effects of Daily Liquid Manure Amount on Silage Corn Productivity and Soil Chemical Characteristics (젖소액비(液肥) 시용량(施用量)에 따른 담근먹이옥수수의 생산성과 토양화학적 특성의 변화)

  • Shin, Jae-Soon;Lee, Hyuk-Ho;Shin, Dong-Eun;Kim, Jeong-Gap;Cho, Young-Mu;Yook, Wan-Bang;Ryoo, Jong Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.1
    • /
    • pp.17-22
    • /
    • 1999
  • Experiment was carried out to determine the agronomic characteristics, forage yield of silage corn(Zea mays L.) soil chemical characterictics and $NO_3-N$ level in infiltration water by different application rates of daily liquid manures. Four treatment consisting of chemical fetilizer, $200kg\;N\;ha^{-1}$, daily liquid manure $200kg\;N\;ha^{-1}$, $300kg\;N\;ha^{-1}$ and $400kg\;N\;ha^{-1}$ were arranged in a randonmized complete block design with three replicates. The results obtained at National Livestock Research Institute, RDA., in Suwon from 1996 to 1997 are summarized as follows; In plant height and crude protein content, it were appeared to highest by 264cm, 6.8% at the cattle slurry 150% plot(T3), respectively. but Dry matter yield(14.5MT/ha) and TDN(9.5MT/ha) production of chemical fertilizer plot(T1) were highest. Among daily liquid manure amount, dry matter yield(14.0MT/ha) and TDN yield(9.1MT/ha) of daily liquid manure 100% plot(T2) were resulted to 96% and 97% of chemical fertilizer plot(T1). End year's soil organic matter and phosphate content were appeared to high than those of beginning year in daily liquid manure plots, but it was not in proportioned to increase according to slurry amount. $NO_3-N$ level in infiltration water lower than 60cm of all plots were lowed than a permitted limit of cattle drinkable. As a result, it was appeared that the optimum application amount of dairy liquid manure was 200kg/ha by manure-N.

  • PDF

The Soil Improvement and Plant Growth on the Newly-Reclaimed Sloped Land III. Effects of Soil Improvement on the Soil Chemical Properties and Silage Corn Growth (신개간경사지(新開墾傾斜地) 토양개량(土壤改良)과 작물생육(作物生育)에 관(關)한 연구(硏究) III. 토양개량(土壤改良)이 토양화학성(土壤化學性)과 청예용(靑刈用) 옥수수 생육(生育)에 미치는 영향(影響))

  • Hur, Bong-Koo;Kim, Moo-Sung;Han, Ki-Hak;Kang, Woo-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.3
    • /
    • pp.197-204
    • /
    • 1989
  • To evaluate the effect of soil improvement on the chemical properties and corn silage yield, this experiment was carried out in the newly-reclaimed sloped land. Corn (Suwon 19) was cultivated under the six different treatments including integrated improvement plot at Songjeong loam, 20 percent slope, from 1985 to 1987 and various soil chemical properties and silage yield were investigated. pH of topsoil was above 5.0 except for control and phosphate plot, but lime and integrated improvement plots were above 5.0 in subsoil. The contents of organic matter of topsoil were above 2.0% except control and subsoiling plot. Except control, the range of cation exchange capacity was 7.4-7.8 me/100g in topsoil, 7.0-7.7 me/100g in subsoil. Soil bacteria density of root zone was the highest in integrated improvement than the other treatments, and it was higher at the harvesting stage than the heading stage. Mean density of microorganism was $61.3{\times}10^5$ in bacteria, $21.5{\times}10^4$ in fungi and actinomycetes was B/F ratio was 28.5 and B/A ratio was 2.9. Vertical root distribution of total and 10cm depth below was more in the integrated improvement and subsoi ling plot than the other plots. Total nitrogen (T-N) content was higher in integrated improvement plot, and phosphate content of leaves was higher in compost and integrated improvement plot, but stem and grain were not different. Potassium content of the plant was higher in integra ted improvement plot. Correlation between dry matter yield and T-N was more significant than the other elements. And the contents of phosphate, calcium and magnesium were significant at 5%, but potassium was not.

  • PDF

Soil properties in Panax ginseng nursury by parent rock (모암별 인삼묘포지의 토양특성에 관한 연구)

  • Min, Ell-Sik;Park, Gwan-Soo;Song, Suck-Hwan;Lee, Sam-Woong
    • Korean Journal of Agricultural Science
    • /
    • v.30 no.1
    • /
    • pp.31-40
    • /
    • 2003
  • A research has been done for growing characteristics of Korean ginseng in Geumsan of Chungnam Province. It had been made to determine the transitional element concentrations of the rocks, divided by biotitic granite(GR) and phyllite(PH). The physical and chemical properties of their weathering soils and ginseng nursery soils were analyzed. The texture in the GR weathering and ginseng nursery soils were sandy clay, and the texture of the PH weathering and ginseng nursery soils were heavy or silty clay. The bulk densities of the GR and PH weathering soils were $1.21{\sim}1.32g/cm^3$ and $1.26{\sim}1.38g/cm^3$, respectively. Also, the bulk densities of the GR and PH ginseng nursery soils were $1.02{\sim}1.10g/cm^3$, respectively. The pH (4.80) of the GR weathering soil were lower than the pH of the PH(5.34) weathering soil. The pH in the 2 year and 4 year-ginseng nursery soil of the GR were 4.39 and 4.40. In addition, those of the PH were 5.24 and 5.34, respectively. The difference in pH of the two nursery soils could be from the pH difference between the two parent materials. The organic matter contents of the GR weathering soils(0.24%) were higher than those of the PH(1.02%) weathering soils. The organic matter of the 2 and 4 year-ginseng GR nursery soils were 0.87% and 1.52%, and of the PH nursery soils were 2.06% and 2.96%, respectively. The total nitrogen contents of the GR weathering soils were 259.43ppm and of the PH weathering soils were 657.22ppm. Those of 2 and 4 year-ginseng GR nursery soils were 588.04ppm and 657.22ppm and those of the PH nursery soils were 1037.72ppm and 1227.96ppm, respectively. The nitrate and ammonium contents of the GR weathering soils were the extremely small, and those of the PH weathering soils were 6.7ppm and 9.94ppm. Those of 2 year-ginseng GR nursery soils(223.09ppm and 26.96ppm) were higher than those of PH(19.46ppm and 8.23ppm) nursery soils. And those of 2 year-ginseng PH nursery soils(14.22ppm and 16.84ppm) were lower than those of PH(306.93ppm, 34.21ppm) nursery soils. The difference was due to fertilizer types and more deposits of nitrate after oxidation of ammonium. The phosphate contents of the GR and PH weathering soils were 14.41ppm and 38.60ppm. Those of GR 2 and 4 year-ginseng nursery soils were 46.89ppm and 102.44ppm and those of the PH nursery soils were 147.04ppm and 38.60ppm. The cation exchange capacities of the GR weathering soils were 12.34me/100g and those of the PH weathering soils were 15.40me/100g. Those of 2 and 4 year-ginseng GR nursery soils were 15.80me/100g and 7.70me/100g and those of PH nursery soils were 12.14me/100g and 12.83me/100g. All of exchangeable cation($K^+$, $Ca^{2+}$, $Mg^{2+}$, $Na^+$) contents in the nursery soils were higher than those in the weathering soils. The $SO_4{^2-}$ contents of the weathering soils in both of the GR(5.98ppm) and PH(9.94ppm) were higher than those of the GR and PH ginseng nursery soils. The $Cl^-$) contents of the GR and PH weathering soils were a very small and those of the nursery soils(2-yr GR: 39.06ppm, 4-yr GR: 273.43ppm, 2-yr PH: 66.41ppm, 4-yr PH: 406.24ppm) were high because of fertilizer inputs.

  • PDF

Maturity Evaluation and Determination of Aeration Time Using Germination Index of Co-Digestates (발아지수를 이용한 혼합 혐기소화액의 부숙도 평가 및 폭기기간 설정)

  • Byeon, Ji-Eun;Lee, Hong-Ju;Hwang, Sun-Goo;Rhim, Tae-Jin;Ryoo, Jong-Won
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.2
    • /
    • pp.5-13
    • /
    • 2020
  • This study was conducted to evaluate the effect of optimal aeration time of livestock manure slurry with fruits pomace on germination index. Six co-digestates of livestock manure slurry with fruits was aerated with 0.1 ㎥ air/㎥·min for 54 days. The maturity of digestates was evaluated using the germination method. The germination index(GI) of co-digestate of SS + CS + MP was more than 70 at the 30th day of aeration. The GI of co-digestate of SS + CS was more than 70 at the 36th day of aeration. The GI of digestate of swine manure slurry alone was 70 at the 54th day of aeration. The co-digestate of SS + MP caused to shorten 24 days of aeration period to reach GI of 70, compared to swine manure digestate. These results suggest that the germination index of seed could be used to establish the optimal aeration time for co-digestate of liquid fertilizer.