• Title/Summary/Keyword: Organic FET

Search Result 61, Processing Time 0.036 seconds

Highly Crystalline 2,6,9,10-Tetrakis((4-hexylphenyl)ethynyl)anthracene for Efficient Solution-Processed Field-effect Transistors

  • Hur, Jung-A;Shin, Ji-Cheol;Lee, Tae-Wan;Kim, Kyung-Hwan;Cho, Min-Ju;Choi, Dong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1653-1658
    • /
    • 2012
  • A new anthracene-containing conjugated molecule was synthesized through the Sonogashira coupling and reduction reactions. 1-Ethynyl-4-hexylbenzene was coupled to 2,6-bis((4-hexylphenyl) ethynyl)anthracene-9,10-dione through a reduction reaction to generate 2,6,9,10-tetrakis((4-hexylphenyl)ethynyl) anthracene. The semiconducting properties were evaluated in an organic thin film transistor (OTFT) and a single-crystal field-effect transistor (SC-FET). The OTFT showed a mobility of around 0.13 $cm^2\;V^{-1}\;s^{-1}$ ($I_{ON}/I_{OFF}$ > $10^6$), whereas the SC-FET showed a mobility of 1.00-1.35 $cm^2\;V^{-1}\;s^{-1}$, which is much higher than that of the OTFT. Owing to the high photoluminescence quantum yield of 2,6,9,10-tetrakis((4-hexylphenyl)ethynyl) anthracene, we could observe a significant increase in drain current under irradiation with visible light (${\lambda}$ = 538 nm, 12.5 ${\mu}W/cm^2$).

Simple and Clean Transfer Method for Intrinsic Property of Graphene

  • Choe, Sun-Hyeong;Lee, Jae-Hyeon;;Kim, Byeong-Seong;Choe, Yun-Jeong;Hwang, Jong-Seung;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.659-659
    • /
    • 2013
  • Recently, graphene has been intensively studied due to the fascinating physical, chemical and electrical properties. It shows high carrier mobility, high current density, and high thermal conductivity compare with conventional semiconductor materials even it has single atomic thickness. Especially, since graphene has fantastic electrical properties many researchers are believed that graphene will be replacing Si based technology. In order to realize it, we need to prepare the large and uniform graphene. Chemical vapor deposition (CVD) method is the most promising technique for synthesizing large and uniform graphene. Unfortunately, CVD method requires transfer process from metal catalyst. In transfer process, supporting polymer film (Such as poly (methyl methacrylate)) is widely used for protecting graphene. After transfer process, polymer layer is removed by organic solvents. However, it is impossible to remove it completely. These organic residues on graphene surface induce quality degradation of graphene since it disturbs movement of electrons. Thus, in order to get an intrinsic property of graphene completely remove of the organic residues is the most important. Here, we introduce modified wet graphene transfer method without PMMA. First of all, we grow the graphene from Cu foil using CVD method. And then, we deposited several metal films on graphene for transfer layer instead of PMMA. Finally, we fabricate graphene FET devices. Our approaches show low defect density and non-organic residues in comparison with PMMA coated graphene through Raman spectroscopy, SEM and AFM. In addition, clean graphene FET shows intrinsic electrical characteristic and high carrier mobility.

  • PDF

Rubbing effect on orientation of Copper Phthalocyanine for flexible organic field-effect transistors

  • Kim, Hyun-Gi;Jang, Jung-Soo;Choi, Suk-Won;Ishikawa, Ken;Takezoe, Hideo;Kim, Sung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1319-1321
    • /
    • 2009
  • Copper phthalocyanine (CuPc) Field-effect transistors (FETs) was successfully fabricated on plastic substrates. Orientation of CuPc crystallites on substrate could be obtained via rubbing process. It was revealed that CuPc crystallites were perpendicularly aligned on PES substrates with the rubbing direction. The performance of FETs was affected by orientation of CuPc on rubbed substrates.

  • PDF

New p-type Organic Semiconducting Materials for Organic Transistor (유기트랜지스터용 p-type 유기반도체 개발)

  • Kang In-Nam;Lee Ji-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.558-562
    • /
    • 2006
  • We have synthesized a new p-type polymer, poly(9,9'-n-dioctylfluorene-alt-phenoxazine) (PFPO), via the palladium catalyzed coupling reaction. The number average molecular weight ($M_n$) of PFPO was found to be 23,000. PFPO dissolves in common organic solvents such as chloroform and toluene. The UV-visible absorption maximum of the PFPO thin film is clearly blue-shifted with respect to that of F8T2, poly-(9,9'-n-dioctylfluorene-alt-bithiophene). The introduction of the phenoxazine moiety into the polymer system results in better field-effect transistor (FET) performance than that of F8T2. A solution processed PFPO TFT device with a top contact geometry was found to exhibit a hole mobility of $2.7{\times}10^{-4}cm^2/Vs$ and a low threshold voltage of -2 V with high on/off ratio(${\sim}10^4$).

Characteristics of Organic Thin Film Transistors with Organic and Organic-inorganic Hybrid Polymer Gate Dielectric (유기물과 유무기 혼합 폴리머 게이트 절연체를 사용한 유기 박막 트랜지스터의 특성)

  • Bae, In-Seob;Lim, Ha-Young;Cho, Su-Heon;Moon, Song-Hee;Choi, Won-Seok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1009-1013
    • /
    • 2009
  • In this study, we have been synthesized the dielectric layer using pure organic and organic-inorganic hybrid precursor on flexible substrate for improving of the organic thin film transistors (OTFTs) and, design and fabrication of organic thin-film transistors (OTFTs) using small-molecule organic semiconductors with pentacene as the active layer with record device performance. In this work OTFT test structures fabricated on polymerized substrates were utilized to provide a convenient substrate, gate contact, and gate insulator for the processing and characterization of organic materials and their transistors. By an adhesion development between gate metal and PI substrate, a PI film was treated using $O_2$ and $N_2$ gas. The best peel strength of PI film is 109.07 gf/mm. Also, we have studied the electric characteristics of pentacene field-effect transistors with the polymer gate-dielectrics such as cyclohexane and hybrid (cyclohexane+TEOS). The transistors with cyclohexane gate-dielectric has higher field-effect mobility, $\mu_{FET}=0.84\;cm^2/v_s$, and smaller threshold voltage, $V_T=-6.8\;V$, compared with the transistor with hybrid gate-dielectric.

Atomic Layer $MoS_2$ Field-effect Transistors on Hexagonal Boron Nitride Substrate

  • Yu, Yeong-Jun;Lee, Gwan-Hyeong;Hone, James;Kim, Philip
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.192-192
    • /
    • 2012
  • The next generation electronics need to not only be smaller but also be more flexible. To meet such demands, electronic devices using two dimensional (2D) atomic crystals like graphene, hexagonal boron nitride (h-BN), molybdenum disulfate ($MoS_2$) and organic thin film have been studied intensely. In this talk, I will demonstrate the $MoS_2$ field effect transistor (FET) toward performance enhancement by insulating h-BN substrate.

  • PDF

Electrical Properties of CuPc Field-effect Transistor with Different Metal Electrodes (금속 전극 변화에 따른 CuPc Field-effect Transistor의 전기적 특성)

  • Lee, Ho-Shik;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.494-495
    • /
    • 2007
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. The CuPc FET device was made a top-contact type and the substrate temperature was room temperature. The source and drain electrodes were used an Au and Al materials. The CuPc thickness was 40nm, and the channel length was $50{\mu}m$, channel width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET with different electrode materials.

  • PDF

Bipolar Characteristics of Organic Field-effect Transistor Using F16CuPc with Active Layer ($F_{16}CuPC$를 활성층으로 사용한 유기전계효과트랜지스터의 바이폴라 특성연구)

  • Lee, Ho-Shik;Park, Young-Pil;Cheon, Min-Woo;Kim, Tae-Gon;Kim, Young-Phyo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.303-304
    • /
    • 2009
  • We fabricated organic field-effect transistors (OFETs) based a fluorinated copper phthalocyanine. ($F_{16}CuPc$) as an active layer. And we observed the surface morphology of the $F_{16}CuPc$ thin film. The $F_{16}CuPc$ thin film thickness was 40nm, and the channel length was $50{\mu}m$, channel width was 3mm. We observed the typical current-voltage (I-V) characteristics and capacitance-voltage (C-V) in $F_{16}CuPc$ FET and we calculated the effective mobility.

  • PDF

Tuning Electrical Performances of Organic Charge Modulated Field-Effect Transistors Using Semiconductor/Dielectric Interfacial Controls (유기반도체와 절연체 계면제어를 통한 유기전하변조 트랜지스터의 전기적 특성 향상 연구)

  • Park, Eunyoung;Oh, Seungtaek;Lee, Hwa Sung
    • Journal of Adhesion and Interface
    • /
    • v.23 no.2
    • /
    • pp.53-58
    • /
    • 2022
  • Here, the surface characteristics of the dielectric were controlled by introducing the self-assembled monolayers (SAMs) as the intermediate layers on the surface of the AlOx dielectric, and the electrical performances of the organic charge modulated transistor (OCMFET) were significantly improved. The organic intermediate layer was applied to control the surface energy of the AlOx gate dielectric acting as a capacitor plate between the control gate (CG) and the floating gate (FG). By applying the intermediate layers on the gate dielectric surface, and the field-effect mobility (μOCMFET) of the OCMFET devices could be efficiently controlled. We used the four kinds of SAM materials, octadecylphosphonic acid (ODPA), butylphosphonic acid (BPA), (3-bromopropyl)phosphonic acid (BPPA), and (3-aminopropyl)phosphonic acid (APPA), and each μOCMFET was measured at 0.73, 0.41, 0.34, and 0.15 cm2V-1s-1, respectively. The results could be suggested that the characteristics of each organic SAM intermediate layer, such as the length of the alkyl chain and the type of functionalized end-group, can control the electrical performances of OCMFET devices and be supported to find the optimized fabrication conditions, as an efficient sensing platform device.

Graphene Characterization and Application for Field Effect Transistors

  • Yu, Young-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.72-72
    • /
    • 2012
  • The next generation electronics need to not only be smaller but also be more flexible. To meet such demands, electronic devices using two dimensional (2D) atomic crystals have been studied intensely. Especially, graphene which have unprecedented performance fulfillments in versatile research fields leads a parade of 2D atomic crystals. In this talk, I will introduce the electrical characterization and applications of graphene for prominently electrical transistors realization. Even the rising 2D atomic crystals such as hexagonal boron nitride (h-BN), molybdenum disulfide (MoS2) and organic thin film for field effect transistor (FET) toward competent enhancement will be mentioned.

  • PDF