• 제목/요약/키워드: Organic Electronics

검색결과 719건 처리시간 0.036초

Enhancement of the efficiency stabilization and the color coordinates in blue organic light-emitting devices with double emitting layers

  • Bang, H.S.;Han, S.M.;Lee, D.U.;Kim, T.W.;Kim, J.H.;Seo, J.H.;Kim, Y.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1030-1033
    • /
    • 2006
  • The efficiency stabilization and the color coordinates in blue organic light-emitting devices (OLEDs) with a double emitting layer (DEL) consisting of 4,4'-Bis(carbazol-9-yl)biphenyl (CBP) and 4,4'-Bis(2,2-diphenyl-ethen-1-yl)diphenyl were investigated. The efficiency of the OLEDs with a DEL did not significantly change with an increase in current density. The Commission Internationale de l'Eclairage coordinates of the OLEDs with a DEL 11 V were (0.150, 0.137), indicative of a deep blue color.

  • PDF

Improvement in Adhesion of the Indium Zinc Oxide (IZO) Thin Films on Organic Polymer Films

  • Lee, Yeong-Beom;Kim, Kyong-Sub;Ko, Min-Jae;Kim, Kyung-Seop
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.537-539
    • /
    • 2009
  • We report the improvement in adhesion of IZO thin films through oxygen ($O_2$) plasma treatment of organic polymer film. In conclusion, the $O_2$ plasma treatment of an organic polymer film was accomplished with improving ca. 1.8 times in adhesion than that of the only general etch treatment on the same organic polymer film.

  • PDF

용액형 유기반도체를 이용한 고성능 포토트랜지스터 (High Performance Organic Phototransistors Based on Soluble Pentacene)

  • 김영훈;이용욱;한정인;한상면;한민구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 Techno-Fair 및 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.79-80
    • /
    • 2007
  • A high performance organic phototransistor with dynamic range of 120 dB is demonstrated by employing soluble pentacene as a photo-sensing layer. The organic phototransistor used suspended source/drain (SSD) electrode structure, which provides a dark current level of ${\sim}10^{-14}$ A at positive gate bias. Under a steady-state illumination, the organic phototransistor exhibited a current modulation of $10^6$ compared to dark to give a dynamic range of 120 dB. These results suggest that the organic phototransistor based on TIPS pentacene can be a new premising candidate for low-cost and high-performance photo-sensing element for digital imaging applications.

  • PDF

Flexible E-Paper Displays Using Low-Temperature Process and Printed Organic Transistor Arrays

  • Jin, Yong-Wan;Kim, Joo-Young;Koo, Bon-Won;Song, Byong-Gwon;Kim, Jung-Woo;Kim, Do-Hwan;Yoo, Byung-Wook;Lee, Ji-Youl;Chun, Young-Tea;Lee, Bang-Lin;Jung, Myung-Sup;Park, Jeong-Il;Lee, Sang-Yoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.431-433
    • /
    • 2009
  • We developed 4.8 inch WQVGA e-paper on plastic substrate using organic field effect transistors (OFETs). Polyethylene naphthalate (PEN) film was used as a flexible substrate and arrays of OFETs with bottom-gate, bottom-contact structure were fabricated on it. Lowtemperature curable organic gate insulating materials were employed and polymer semiconductor solutions were ink-jetted on arrays with high-resolution. At all steps, process temperature was limited below $130^{\circ}C$. Finally, we could drive flexible e-paper displays based on OFET arrays with the resolution of 100 dpi.

  • PDF

The Optimization of the Organic Passivation Process in the TFT-LCD Panel for LCD Televisions

  • Lee, Yeong-Beom;Jun, Sahng-Ik
    • Journal of Information Display
    • /
    • 제10권2호
    • /
    • pp.54-61
    • /
    • 2009
  • The results of the optimization of the organic passivation process for fabricating thin-film transistors (TFTs) with a high aperture ratio on a seventh-generation glass (2200${\times}$1870 mm) substrate for LCD-TV panels are reported herein. The optimization of the organic passivation process has been verified by checking various factors, including the material properties (e.g., thickness, stain, etching, thermal reflow) and the effects on the TFT operation (e.g., gate/data line delay and display-driving properties). The two main factors influencing the organic passivation process are the optimization of the final thickness of the organic passivation layer, and the gate electrode. In conclusion, the minimum possible final thickness was found to be $2.42{\um}m$ via simulation and pilot testing, using the full-factorial design. The optimization of the organic passivation layer was accomplished by improving its brightness by over 10 cd/$m^2$ (ca. 2% luminance) compared to that of the conventional organic passivation process. The results of this research also help reduce the reddish stain on display panels.

All-Organic Nanowire Field-Effect Transistors and Complementary Inverters Fabricated by Direct Printing

  • 박경선;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.632-632
    • /
    • 2013
  • We generated single-crystal organic nanowire arrays using a direct printing method (liquidbridge- mediated nanotransfer molding) that enables the simultaneous synthesis, alignment and patterning of nanowires from molecular ink solutions. Using this method, single-crystal organic nanowires can easily be synthesized by self-assembly and crystallization of organic molecules within the nanoscale channels of molds, and these nanowires can then be directly transferred to specific positions on substrates to generate nanowire arrays by a direct printing process. The position of the nanowires on complex structures is easy to adjust, because the mold is movable on the substrates before the polar liquid layer, which acts as an adhesive lubricant, is dried. Repeated application of the direct printing process can be used to produce organic nanowire-integrated electronics with twoor three-dimensional complex structures on large-area flexible substrates. This efficient manufacturing method is used to fabricate all-organic nanowire field-effect transistors that are integrated into device arrays and inverters on flexible plastic substrates.

  • PDF

박막의 조성비율에 따른 유기태양전지의 효율성 연구 (A Study about the Efficiency of Organic Photovoltaic Device as a function of the Material Concentration)

  • 김승주;이동근;박재형;공수철;김원기;류상욱
    • 반도체디스플레이기술학회지
    • /
    • 제8권3호
    • /
    • pp.1-5
    • /
    • 2009
  • In this study, we have shown the power conversion efficiency of organic thin film photovoltaic devices utilizing a conjugated polymer/fullerene bulk-hetero junction structure. We use MDMO-PPV(Poly[2-methoxy-5-(3,7-dimethyloctyloxy -1,4-phenylenevinylene) as an electron donor, PCBM([6,6]-Phenyl C61 butyric acid methyl ester) as an electron accepter, and PEDOT:PSS used as a HTL(Hole Transport Layer). We have fabricated OPV(Organic Photovoltaic) devices as a function of the MDMO-PPV/PCBM concentration from 1:1 to 1:5. The electrical characteristics of the fabricated devices were investigated by means of I-V, P-V, F·F(Fill Factor) and PCE(power conversion efficiency). The power conversion efficiency was gradually increased until 1:4 ratio, also the highest efficiency of 0.4996% was obtained at the ratio.

  • PDF

펜타센 TFT와 유기 LED로 구성된 픽셀 어레이 제작 (Fabrication of Pixel Array using Pentacene TFT and Organic LED)

  • 최기범;류기성;정현;송정근
    • 대한전자공학회논문지SD
    • /
    • 제42권12호
    • /
    • pp.13-18
    • /
    • 2005
  • 본 논문에서는 Poly-ethylene-terephthalate (PET) 기판 위에 Organic Thin Film Transistor (OTFT)와 Organic Light Emitting Diode (OLED)를 직렬 연결시킨 픽셀과 64 x 64 픽셀로 구성된 어레이를 제작하여 동작을 시연하였다. OTFT는 PET 기판과의 호환성을 고려하여 Poly 4-vinylphenol을 게이트 절연체로, 펜타센을 활성층으로 사용하여 제작되었다. 개별 소자 수준에서는 이동도가 $1.0\;cm^2/V{\cdot}sec$로 나타났으나, 어레이에서는 $0.1\~0.2\;cm^2/V{\cdot}sec$로 약 10배 정도 감소하였다. 어레이의 동작을 분석하였고 OTFT의 OLED에 대한 전류구동능력을 확인하였다.

Capillarity-Driven Self-Assembly of Silver Nanowires-Coated Fibers for Flexible and Stretchable Conductor

  • Li, Yi;Chen, Jun;Han, Xiao;Li, Yinghui;Zhang, Ziqiang;Ma, Yanwen
    • Nano
    • /
    • 제13권12호
    • /
    • pp.1850146.1-1850146.9
    • /
    • 2018
  • The rapid development of smart textiles requires the large-scale fabrication of conductive fibers. In this study, we develop a simple, scalable and low-cost capillary-driven self-assembly method to prepare conductive fibers with uniform morphology, high conductivity and good mechanical strength. Fiber-shaped flexible and stretchable conductors are obtained by coating highly conductive and flexible silver nanowires (Ag NWs) on the surfaces of yarn and PDMS fibers through evaporation-induced flow and capillary-driven self-assembly, which is proven by the in situ optical microscopic observation. The density of Ag NWs and linear resistance of the conductive fibers could be regulated by tuning the assembly cycles. A linear resistance of $1.4{\Omega}/cm$ could be achieved for the Ag NWs-coated nylon, which increases only 8% after 200 bending cycle, demonstrating high flexibility and mechanical stability. The flexible and stretchable conductive fibers have great potential for the application in wearable devices.

Enhanced Lifetime and Efficiency of Organic Light Emitting Diodes

  • Choi, Han-Ho;Kim, Myung-Seop;Park, Sang-Tae;Yang, Joong-Hwan;Kim, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1803-1804
    • /
    • 2006
  • In this paper, device performances of organic lightemitting diodes (OLEDs) will be presented for AMOLED and general illumination applications. Various types of advanced devices were developed to enhance the power efficacy and luminous efficiency. Here we also demonstrated longer lifetime AM-OLED structures, which lifetime is about 100 hours until $L/L_0$ reaches 0.99.

  • PDF