• Title/Summary/Keyword: Organic Electroluminescence device

Search Result 109, Processing Time 0.024 seconds

Effects of Low Workfunction Metal Acetate Layers on the Electroluminescent Characteristics of Organic Light-Emitting Diodes (저일함수 금속 아세트산 화합물 층을 사용한 유기발광다이오드의 전기발광 특성 향상)

  • Kim, Mansu;Yu, Geun-Chae;Kim, Young Chul
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.634-639
    • /
    • 2013
  • We investigated the effects of a cathode underlayer on the electroluminescence (EL) characteristics of organic light-emitting diodes (OLEDs) using various metal acetates (M-acetate, M = Li, Na, K, Cs) as a cathode underlayer. When 1 nm thick M-acetate layers were used as a cathode underlayer, the OLEDs with M-acetate showed better EL performance than the device with the conventional LiF electron injection layer except the device with Cs-acetate. More enhanced current density and improved EL characteristics were obtained when lower work function metal acetate was employed. In addition, the optimum M-acetate layer thickness that gives the best device performance proved to be 0.7 and 2.0 nm for Li-acetate and Cs-acetate, respectively, probably depending on the molecular size of M-acetate. The OLEDs with the M-acetate layers of optimized thickness demonstrated more than 60% enhanced current efficiency compared with that of the device using an LiF layer at the same applied voltage.

Energy Band Schemes of Organic Electroluminescence Devices Using Lanthanide Metal Complexes (란탄계 금속 착화합물을 이용한 유기 전기 발광 소자의 에너지 밴드 구조의 연구)

  • Pyo, S.W.;Lee, J.H.;Lee, H.S.;Lee, S.H.;Kim, Y.K.;Kim, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1735-1737
    • /
    • 1999
  • In this study, several lanthanide complexes such as Eu$(TTA)_3$(Phen). Tb$(ACAC)_3$(Cl-Phen) were synthesized and the white-light electroluminescence (EL) characteristics of their thin films were investigated. where the devices having structures of anode/TPD/Tb$(ACAC)_3$(Cl-Phen)/Eu$(TTA)_3$(Phen)/$Alq_3$ or $Bebq_2$/ cathode and the low work function metal alloy such as Li:Al was used as the electron injecting electrode (cathode). Details on the white-light-emitting characteristics of these device structures were explained by the energy band diagrams of various materials used in these structures, where the energy levels of new materials such as ionization potential (IP) and electron affinity (EA) were measured by cyclic voltametric method.

  • PDF

Low molecular amorphous spirobifluorene derivatives for blue electroluminescence

  • Lee, Hyo-Young;Oh, Ji-Young;Chu, Hye-Yong;Lee, Jeong-Ik;Kim, Seong-Hyun;Yang, Yong-Suk;Do, Lee-Mi;Zyung, Tae-Hyoung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2001.08a
    • /
    • pp.209-212
    • /
    • 2001
  • We report the synthesis and characterization of new alkoxy substituted spirobifluorene derivatives. The spiro compounds having alkoxy hydrocarbon chains were readily soluble in common organic solvents, having improved film-forming properties and had a significantly reduced tendency to crystallize, resulting in increasing their service lifetime. The results of DSC showed that it was amorphous. The optical and electroluminescent spectra were characterized. Electroluminescence (EL) properties of three-layer light emitting diodes (LED) of $ITO/TPD/spirobifluorene/Alq_3/LiF/Al$ as the active layer were characterized. Blue emission peaking of the EL spectrum of the three-layer device at 402 nm and a luminance of 3,125 $cd/m^2$ were achieved at a drive voltage 12.8 V. The luminous efficiency was obtained to be 1.7 lm/W. The color coordinate in CIE chromaticity is (0.16, 0.09), which is in a pure blue region. The external quantum efficiency was obtained to be 2.0%. The results indicate that the spirobifluorene compounds having alkoxy hydrocarbon chains are strongly potential blue emitters for LED applications.

  • PDF

Fabrication and Characteristics of Hetero-junction EL Devices Containing Electron Transport Layer and PPV as Emitting Layer (PPV 발광층 및 전자 수송층을 가진 이종 접합구조 EL 소자의 제작 및 특성)

  • Park, Lee Soon;Han, Yoon Soo;Kim, Sung Jin;Shin, Dong Soo;Shin, Won Gi;Kim, Woo Young;Lee, Choong Hun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.710-714
    • /
    • 1998
  • Organic electroluminescence devices (ELD) with hetero-junction structure were fabricated utilizing poly(p-phenylne vinylene) (PPV) as emitting layer and electron transport layer (ETL). 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) was used as an electron transport agent. Copolymers with stilbene type comonomers, such as poly(styrene-co-PVTS), poly(styrene-co-MeO-PVTS) and poly(styrene-co-MeO-ST) were synthesized to be used as a matrix polymer to disperse electron transport agent (PBD). Among the hetero-junction EL devices fabricated with the above materials, the device with poly(styrene-co-PVTS) as matrix polymer for ETL gave the highest luminance ($120.7cd/m^2$, 13 V). EL devices made with poly(styrene-co-MeO-PVTS) or poly(styrene-co-MeO-ST) matrix exhibited lower luminance than the one with polystyrene matrix and the single layer EL (ITO/PPV/Mg) device.

  • PDF

Red Fluorescent Donor-π-Acceptor Type Materials based on Chromene Moiety for Organic Light-Emitting Diodes

  • Yoon, Jhin-Yeong;Lee, Jeong Seob;Yoon, Seung Soo;Kim, Young Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1670-1674
    • /
    • 2014
  • Two red emitters, 2-(7-(4-(diphenylamino)styryl)-2-methyl-4H-chromen-4-ylidene)malonitrile (Red 1) and 2-(7-(julolidylvinyl)-2-methyl-4H-chromen-4-ylidene)malonitrile (Red 2) have been designed and synthesized for application as red-light emitters in organic light emitting diodes (OLEDs). In these red emitters, the julolidine and triphenyl moieties were introduced to the emitting core as electron donors, and the chrome-derived electron accepting groups such as 2-methyl-(4H-chromen-4-ylidene)malononitrile were connected to electron donating moieties by vinyl groups. To explore the electroluminescence properties of these materials, multilayered OLEDs using red materials (Red 1 and Red 2) as dopants in $Alq_3$ host were fabricated. In particular, a device using Red 1 as the dopant material showed maximum luminous efficiencies and power efficiencies of 0.82 cd/A and 0.33 lm/W at $20mA/cm^2$. Also, a device using Red 2 as a dopant material presented the CIEx,y coordinates of (0.67, 0.32) at 7.0 V.

White organic light-emitting devices with a new DCM derivative as an efficient red-emitting material

  • Lee, Mun-Jae;Lee, Nam-Heon;Song, Jun-Ho;Park, Kyung-Min;Yoo, In-Sun;Lee, Chang-Hee;Hwang, Do-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.940-943
    • /
    • 2003
  • We report the fabrication and the characterization of white organic light-emitting devices consisting of a red-emitting layer of a new DCM derivative doped into 4,4'bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl (${\alpha}-NPD$) and a blue-emitting layer of 1,4-bis(2,2-diphenyl vinyl)benzene (DPVBi). The device structure is ITO/PEDOT:PSS/${\alpha}-NPD$ (50 nm)/${\alpha}-NPD$:DCM (5 nm, 0.2 %)/DPVBi (x)/Alq3 (40 nm)/LiF (0.5 nm)/Al. The electroluminescence (EL) spectra consist of two broad peaks around 470 nm and 580 nm with the spectral emission depending on the thickness of DPVBi. The device with the DPVBi thickness of about 20 nm show a white light-emission with the Commission Internationale d'Eclairage(CIE) chromaticity coordinates of (0.33, 0.36). The external quantum efficiency is 2.6% and luminous efficiency is 2.0 lm/W at a luminance of 100 $cd/m^{2}$. The maximum luminance is about 30,270 $cd/m^{2}$ at 13.9 V.

  • PDF

Studies on the Characteristics of Single-Layered Organic EL Device Using a Copolymer Having Hole and Electron Transporting Moieties (정공 및 전자 전달체의 기능기를 가진 공중합체를 사용한 단층형 유기 발광소자의 특성에 관한 연구)

  • 이창호;김승욱;오세용
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.543-550
    • /
    • 2002
  • We have synthesized a novel carrier transporting copolymer having triphenylamine moiety as a hole transporting unit and triazine moiety as an electron transporting unit in the polymer side chain. Single-layered organic electroluminescent (EL) devices consisted of ITO/copolymer and emitting materials (DCM, coumarin 6, DPvBi)/Al exhibited maximum external quantum efficiency when the ratio of hole transporting unit and electron transporting unit is 6:4 and the content of emitting material is 30 wt%. Especially, the devices emitted the light of red (620 nm), green (520 nm) and blue (450 nm) corresponding to the emitting materials, respectively. A maximum luminance of ITO/copolymer (6:4) and DCM (30 wt%)/Al EL device was about 500 cd/$m^2$ at a DC drive voltage of 12V.

Electroluminescence Characteristics of a New Green-Emitting Phenylphenothiazine Derivative with Phenylbenzimidazole Substituent

  • Ahn, Yeonseon;Jang, Da Eun;Cha, Yong-Bum;Kim, Mansu;Ahn, Kwang-Hyun;Kim, Young Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.107-111
    • /
    • 2013
  • A new green-emitting material with donor-acceptor architecture, 3,7-bis(1'-phenylbenzimidazole-2'-yl)-10-phenylphenothiazine (BBPP) was synthesized and its thermal, optical, and electroluminescent characteristics were investigated. Organic light-emitting diodes (OLEDs) with four different multilayer structures were prepared using BBPP as an emitting layer. The optimized device with the structure of [ITO/2-TNATA (40 nm)/BBPP (30 nm)/TPBi (30 nm)/Alq3 (10 nm)/LiF (1 nm)/Al (100 nm)] exhibited efficient green emission. Enhanced charge carrier balance and electron mobility in the organic layers enabled the device to demonstrate a maximum luminance of 31,300 cd/$m^2$, a luminous efficiency of 6.83 cd/A, and an external quantum efficiency of 1.62% with the CIE 1931 chromaticity coordinates of (0.21, 0.53) at a current density of 100 mA/$cm^2$.

Effects of Hole-Injection Buffer Layer in Organic Light-Emitting Diodes (유기 발광 소자에서 정공 주입 버퍼층의 효과)

  • 정동희;김상걸;오현석;홍진웅;이준웅;김영식;김태완
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.816-825
    • /
    • 2003
  • Current-voltage-luminance characteristics of organic light-emitting diodes (OLEDs) were measured in the temperature range of 10 K~300 K. Indium-tin-oxide (ITO) was used as an anode and aluminum as a cathode in the device. Organic of N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine (TPD) was used for a hole transporting material, and tris (8-hydroxyquinolinato) aluminum (Alq$_3$) for an electron transporting material and emissive material. And copper phthalocyanine (CuPc), poly(3,4-ethylenedi oxythiophene);poly(styrenesulfonate) (PEDOT:PSS), and poly(N-vinylcarbazole) (PVK) were used for hole-injection buffer layers. From tile analysis of electroluminescence (EL) and photoluminesccnce (PL) spectra of the Alq$_3$, the EL spectrum is more greenish then that of PL. And the temperature-dependent current-voltage characteristics were analyzed in the double and multilayer structure of OLEDS. Electrical conduction mechanism was explained in the region of high-electric and low-electric field. Temperature-dependent luminous efficiency and operating voltage were analyzed from the current-voltage- luminance characteristics of the OLEDS.

Electroluminescence Properties of Novel Blue-Emitting Materials Based on Spirobifluorene (Spirobifluorene 그룹을 포함하는 새로운 청색 발광 재료의 전계발광)

  • Sunwoo, Park;Hayoon, Lee;Hyukmin, Kwon;Godi, Mahendra;Sangshin, Park;Seungeun, Lee;Jongwook, Park
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.94-97
    • /
    • 2023
  • 2,7-bis(3',6'-diphenyl-[1,1':2',1"-terphenyl]-4'-yl)-9,9'-spirobi[fluorene] (BTPSF) and 2,7-bis(1,4-diphenyltriphenylen-2-yl)-9,9'-spirobi[fluorene] (BDTSF) were successfully synthesized as novel blue-emission materials for organic light-emitting diodes (OLEDs) based on the spirobifluorene (SBF) moiety. BTPSF and BDTSF were obtained in high purity via a Diels-Alder reaction, without the use of a catalyst. Photoluminescence spectra of the synthesized materials showed maximum emitting wave-lengths of approximately 381 and 407 nm in solution and 395 and 434 nm in the film state, for BTPSF and BDTSF, respectively, indicating ultra-violet and deep blue emission colors. BDTSF was applied as an emissive layer (EML) in non-doped devices and achieved a current efficiency of 0.61 cd/A and an external quantum efficiency (EQE) of 0.46%.