• Title/Summary/Keyword: Organic Compound

Search Result 1,084, Processing Time 0.029 seconds

Applicability Evaluation of Nitritation with Various Wastewater (다양한 하수를 대상으로 아질산화 반응 적용성 평가)

  • Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.17 no.1
    • /
    • pp.11-18
    • /
    • 2015
  • As the seriousness of water pollution resulted from nitrogen is being magnified, research has been conducted to reduce nitrogen in sewage as well as wastewater. Particularly research on innovative nitrogen removal methods that are based on the reaction of nitritation and are economically feasible and eco-friendly has been receiving attention. However, research on the applicability and efficiency of the methods based on the reaction of nitritation has not been completely done yet. Accordingly, the current study has analyzed the characteristics of sewage flowing into municipal wastewater treatment plants, primary clarifier supernatant, recycled water, and livestock wastewater and also operated a laboratory-level reactor. The result shows that recycled water and livestock wastewater contain higher-concentration nitrogen than other kinds of sewage, so they increase nitrogen loading in the water treatment line. And the result of operating a reactor shows that because of ammonium nitrogen low concentration, sewage and primary clarifier supernatant do not induce the reaction of nitritation. Also, there exist differences in the conditions of retention time inducing the reaction of nitritation by the types of sewage, and this seems to be attributed to organic compound and ammonium nitrogen concentration. Among the kinds of sewage inducing the reaction of nitritation, anaerobic digester supernatant indicates the highest efficiency.

Evaluation of the Anti-obesity Activity of Platycodon grandiflorum Root and Curcuma longa Root Fermented with Aspergillus oryzae (도라지, 울금의 Aspergillus oryzae 발효에 의한 항비만효과 연구)

  • Kang, Yun Hwan;Kim, Kyoung Kon;Kim, Tae Woo;Yang, Chun Su;Choe, Myeon
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.111-118
    • /
    • 2015
  • In the present study, the phenolic compound level, antioxidant activity, and inhibition of lipid accumulation in Aspergillus oryzae-fermented water extracts of the Platycodon grandiflorum (PG) root and the Curcuma longa (CL) root were determined. Total polyphenol and flavonoid contents were decreased after fermentation. However, the flavonoid content of the fermented PG (FPG) was increased by 2.9-fold that of the PG before fermentation. In addition, the antioxidant activities were significantly decreased following fermentation. The potential anti-obesity activity was assessed by determining lipid accumulation and mRNA expression of sterol regulatory element-binding protein 1c (SREBP-1c) and peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) in 3T3-L1 cells. Aspergillus-fermented extracts of PG and CL roots decreased lipid accumulation, and mRNA expression of SREBP-1c and $PPAR{\gamma}$ in 3T3-L1 cells. These results indicate that Aspergillus fermentation augments the anti-obesity activity of PG and CL by regulating the expression of the genes involved in lipid accumulation and cell differentiation of 3T3-L1 cells.

The Characteristics of Spatio-temporal Distribution on Environmental Factors After Construction of Artificial Structure in the Nakdong River Estuary (인공시설물 건설 이후 낙동강 하구 환경인자의 시·공간적분포특성)

  • Yoon, Sang Chol;Youn, Suk Hyun;Suh, Young Sang
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Nakdong River Estuary is affected by the dam, barrage construction and dredge and reclaim worked artificially. So, we have studied the area input both freshwater and sea water to understand marine environment of Nakdong River estuary related to the effect of artificial work from 2013 to 2015. As a result, The discharge flow to the estuary remarkably decreased before barrage construction and the average of salinity at the estuary increased. So, the brackish water zone reduced under the influence of decreased discharge flow. The major sources of nitrate and silicate were freshwater, phosphate supplied from bottom and the open sea water. The concentration of phosphate and dissolved oxygen (DO) decreased remarkably in spring and summer. we investigated that phosphate in freshwater was removed under the influence of the estuary dam and phosphate in sea water was removed under the influence of phytoplankton. The low concentration of DO was due to decomposition of the organic compound by microorganism after phytoplankton blooms. Generally, the concentrations of chlorophyll-a in summer was higher than spring and fall. Therefore, the change of ecosystem in Nakdong river estuary was due to decrease of freshwater influx, the other change is facing because of the barrage.

Quality Characteristics of Sikhye made with Berries (베리류로 제조한 식혜의 품질 특성에 관한 연구)

  • Yang, Ji-won;Jung, Sung Keun;Song, Kyung-Mo;Kim, Young Ho;Lee, Nam Hyouck;Hong, Sang Pil;Lee, Kyung Hee;Kim, Young-Eon
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.25 no.6
    • /
    • pp.1007-1017
    • /
    • 2015
  • This study compared the physicochemical characteristics, proximate composition, taste compound, and antioxidant properties of Sikhye prepared with berries. Proximate composition and color were significantly different depending on the type of berry, whereas crude fat content and pH were not. The highest brix degree was $18.92^{\circ}Bx$ in strawberry Sikhye. Total free sugar, glucose, and fructose contents were highest in blueberry Sikhye. Titratable acidity, total acidity, and organic acid contents were highest in raspberry Sikhye. Analysis of relative antioxidative properties indicated that bokbunja Sikhye had the highest total polyphenol, flavonoid, and anthocyanin contents, highest DPPH radical scavenging ability, and highest reducing power and ferric reducing abilities in plasma. Principal component analysis suggests that bokbunja Sikhye has strong antioxidant and sweetness properties.

Quality Characteristics and Volatile Flavor Compounds of Oriental Melon Wine Using Freeze Concentration (동결농축 참외와인의 품질 특성과 휘발성 향기 성분)

  • Hwang, Hee-Young;Hwang, In-Wook;Chung, Shin-Kyo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.9
    • /
    • pp.1347-1355
    • /
    • 2015
  • In this study, the physicochemical properties, antioxidant capacities, and volatile flavor compounds of oriental melon wine prepared by freeze concentration after heat treatment (HA), ascorbic acid treatment (AAT), and heat and ascorbic acid treatment (HAAT) were investigated. During fermentation period, the melon wine by HAAT showed greater reduction of soluble solids and reducing sugar contents compared to other treatments. In addition, the melon wine treated with HAAT also showed a higher L value and lower browning index compared to other treatments. After aging, free sugar including fructose, and organic acids including citric acid, succinic acid, and malic acid were detected in all samples. For antioxidant activities and contents, HAAT treated wine showed greater antioxidant activities and total phenolic contents than those of others. In GC/MS analysis, a total of 33 volatile flavor compounds were identified. In the principal component analysis of volatile flavor compounds, principal components 1 and 2 represented 88.15% of the whole date distribution and showed opposite tendencies. Taken together, HAAT enhanced the antioxidant activities and sensory properties of oriental melon wine. Moreover, freeze concentration gave the different volatile flavor characteristics in oriental melon wine.

Biodegradation of Polynuclear Aromatic Hydrocarbons in soil using microorganisms under anaerobic conditions (혐기성 미생물에 의한 토양내 다핵성방향족화합물의 생물학적 분해)

  • An, Ik-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.89-91
    • /
    • 2000
  • Polynuclear aromatic hydrocarbon (PAH) compounds are highly carcinogenic chemicals and common groundwater contaminants that are observed to persist in soils. The adherence and slow release of PAHs in soil is an obstacle to remediation and complicates the assessment of cleanup standards and risks. Biological degradation of PAHs in soil has been an area of active research because biological treatment may be less costly than conventional pumping technologies or excavation and thermal treatment. Biological degradation also offers the advantage to transform PAHs into non-toxic products such as biomass and carbon dioxide. Ample evidence exists for aerobic biodegradation of PAHs and many bacteria capable of degrading PAHs have been isolated and characterized. However, the microbial degradation of PAHs in sediments is impaired due to the anaerobic conditions that result from the typically high oxygen demand of the organic material present in the soil, the low solubility of oxygen in water, and the slow mass transfer of oxygen from overlying water to the soil environment. For these reasons, anaerobic microbial degradation technologies could help alleviate sediment PAH contamination and offer significant advantages for cost-efficient in-situ treatment. But very little is known about the potential for anaerobic degradation of PAHs in field soils. The objectives of this research were to assess: (1) the potential for biodegradation of PAH in field aged soils under denitrification conditions, (2) to assess the potential for biodegradation of naphthalene in soil microcosms under denitrifying conditions, and (3) to assess for the existence of microorganisms in field sediments capable of degrading naphthalene via denitrification. Two kinds of soils were used in this research: Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS). Results presented in this seminar indicate possible degradation of PAHs in soil under denitrifying conditions. During the two months of anaerobic degradation, total PAH removal was modest probably due to both the low availability of the PAHs and competition with other more easily degradable sources of carbon in the sediments. For both Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS), PAH reduction was confined to 3- and 4-ring PAHs. Comparing PAH reductions during two months of aerobic and anaerobic biotreatment of MHS, it was found that extent of PAHreduction for anaerobic treatment was compatible with that for aerobic treatment. Interestingly, removal of PAHs from sediment particle classes (by size and density) followed similar trends for aerobic and anaerobic treatment of MHS. The majority of the PAHs removed during biotreatment came from the clay/silt fraction. In an earlier study it was shown that PAHs associated with the clay/silt fraction in MHS were more available than PAHs associated with coal-derived fraction. Therefore, although total PAH reductions were small, the removal of PAHs from the more easily available sediment fraction (clay/silt) may result in a significant environmental benefit owing to a reduction in total PAH bioavailability. By using naphthalene as a model PAH compound, biodegradation of naphthalene under denitrifying condition was assessed in microcosms containing MHS. Naphthalene spiked into MHS was degraded below detection limit within 20 days with the accompanying reduction of nitrate. With repeated addition of naphthalene and nitrate, naphthalene degradation under nitrate reducing conditions was stable over one month. Nitrite, one of the intermediates of denitrification was detected during the incubation. Also the denitrification activity of the enrichment culture from MHS slurries was verified by monitoring the production of nitrogen gas in solid fluorescence denitrification medium. Microorganisms capable of degrading naphthalene via denitrification were isolated from this enrichment culture.

  • PDF

Field Applicability Evaluation Using Effective Microorganism Brewing Cycle for Contaminated Soil in Water Retention Basin (복합발효미생물을 이용한 하천유수지 오염토의 현장적용성 평가)

  • Shin, Eunchul;Jung, Minkyo;Kim, Kyeongsig;Kang, Jeongku
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.11
    • /
    • pp.35-43
    • /
    • 2016
  • In this study, by using a Effective Microorganisms Brewing Cycle, it confirmed the purification effect of pollutants that are adsorbed on the basins stench removal and retarding soil. On the basis of on-site application test, a soil decontamination system will be suggested. Using a Effective Microorganisms Brewing Cycle, the odor concentration is reduced 2.5 times than that of natural purification treatment method. It was measured and found that the quality of the pore water discharged from the soil is improved. In addition, it was found that a composite of copper and lead with the fermentation microorganisms adsorbed on soil particles from the surface of the stirred experiments lagoon mixed soil is reduced to 65% and 66%, respectively, The TPH organic component was confirmed that the reduction effect of 85%. Restoration of reservoir contaminated soils using the effective microorganism brewing cycle needs to be more developed and implemented as a long-term purification system. This study may be a good reference of developing more complete microorganism brewing system which will efficiently reduce the odor and soil contamination based on optimal stirring and mixing ratio of the compound solutions and contaminated soils in reservoir.

1,3-Propanediol Fermentation using the by-Products from Fat Industry (글리세롤을 함유한 유지산업 부산물의 1,3-propanediol 발효)

  • 김철호;김승환;김세정;박건규;이상기
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.255-260
    • /
    • 2002
  • 1,3-Propanediol as a bifunctional organic compound could be used in polymerization reactions producing polyesters and polyurethanes. Byproduct containing high concentration of glycerol from fat industry was used to produce 1,3-propanediol in lower production cost as well as waste treatment. In this study, various attempts were made to increase 1,3-propanediol production under different conditions using Klebsiella pneumoniae ATCC 15380. The conversion yield and byproduct formation were influenced significantly by the fermentation pH and temperature. The optimal glycerol and nitrogen concentration for 1,3-propanediol production were found to be 25 a/L and 1%(w/v), respectively. The formation of 1,3-propanediol was optimal at pH 6.0 and temperature $35^{\circ}C$. 1,3-Propanediol production from byproduct from 2.5% glycerol was lower than that of 2.5% commercial glycerol and amounted only to 9.84 a/L from byproduct, while to 12.13 a/L from commercial glycerol.

Development of Revegetation Methods Using Fresh Woodchip from Construction Works (건설현장 발생재를 활용한 비탈면 녹화에 관한 연구)

  • Nam, Sang-Jun;Kim, Kyung-Hoon;Yeo, Hwan-Joo;Jung, Ji-Jun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.3
    • /
    • pp.86-95
    • /
    • 2004
  • This study was conducted to develop recycle revegetation methods for the restoration of the steep slopes by using fresh wood chip from construction sites. In general, the fresh wood chips can be used as soil media for the restoration works, because they can increase infiltration of rainfall and give enough porous to breathe and elongate for the root growth as well as economic value. The experiment was carried out to compare the effect of fresh wood chips from different mixing with soil, organic material and macromolecular compound which used for slope restoration works conducted by Hyunwoo green(Ltd.). The main results by monitoring for two years are summarized as follows; 1. The soil media made with low percentage of fresh wood chip covered quickly by herb plants. Especially, the soil mixture Type C (wood chip 20%) showed 80 percent ground coverage within two months after seeding. 2. The soil mixture type E (wood chip 40%) and type F (wood chip 50%) which contains more fresh wood chips than soil type C was under 30 percent ground coverage because wood plants are germinated well. If the restoration works aims at making forest, then the soil type E and F would be recommended than using soil type C. 3. Among the woody plants, Ailanthus alfissima, Pinus rigida, Pinus densiflora, and Albizzia julibrissin showed high percentage of germination rates and vigorous growth. In case of shrubs, Lespedeza cyrtobotria and Indigofera pseudo-tintoria scored high percentage of germination rates. 4. In native plants, Chrysanthemum indicum, Artemisia princeps, Lutos corniculatus and Imperata cylindrica showed high percentage of appearance. In case of introduced herbs, Coreopsis lanceolata, Coreopsis tinctoria and Oenothera oborata grew so vigorously. 5. The soil types which including fresh wood chips over 30-40 percentage showed the most diverse plant composition and the most effective germination rates and growth pattern with woody plants. 6. This works to develop recycle revegetation methods using fresh wood chips need more efforts for monitoring the exact effect of fresh wood chips as the soil media.

Thermodynamic Studies on the Adsorption of 4-Octylphenol on Carboxen by GC/MS Analysis (GC/MS 분석에 의한 4-Octylphenol의 Carboxen 흡착에 대한 열역학적 연구)

  • Lee, Joon-Bae;Park, Woo-Yong;Shon, Shungkun;Jung, Ji Eun;Jeong, Yong Ae;Gong, Bokyoung;Kim, Yu-Na;Kwon, O-Seong;Paeng, Ki Jung
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.356-361
    • /
    • 2018
  • It is common to analyze volatile organic compound (VOC) or semi-VOC (SVOC) in a sample composed of a complex matrix consisting of multiple components such as bloods through a separation process. Adsorption is a physical phenomenon in which certain components accumulate on the surface of other phases. In order to overcome difficulties in the pretreatment process, an adsorption is frequently used. Solid phase microextraction (SPME) equipment with porous carbon carboxen (CAR) is an example of adsorption application. In this study, the adsorption of 4-octylphenol to carboxen was examined. To do so, the extraction efficiency for such solvents as dichloromethane ($CH_2Cl_2$, DCM), ethylacetate ($CH_3COOC_2H_5$, EA) and diethylether ($C_2H_5OC_2H_5$, $Et_2O$) was studied and also the derivatization reaction for 4-octylphenol with reagents of bistrimethylsilyltrifluoroacetamide (BSTFA), methylchloroformate (MCF) and pentafluorobenzylbromide (PFBBr) was compared. The combination of DCM and BSTFA showed good performance thus they were adopted for this study. Thermodynamic adsorption experiments showed that the adsorption process was endothermic and Freundlich isotherm equation was more suitable than Langmuir isotherm. It was also found that the adsorption followed a pseudo-$2^{nd}$ order kinetic model.