• Title/Summary/Keyword: Organic Chloramines

Search Result 3, Processing Time 0.015 seconds

Formation of Organic Chloramines during Monochloramination of Natural Organic Matters (천연유기물과 모노클로라민의 반응시 유기성 클로라민 생성)

  • Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.604-608
    • /
    • 2014
  • This study investigated influence of dissolved organic nitrogen (DON) in natural organic matter (NOM) on the formation of organic chloramines upon monochloramination. Ratios of dissolved organic carbon (DOC) to DON of the 16 NOM isolates ranged from 7 to 47 mg-C/mg-N. Levels of organic chloramines maxed in 24 hours at $0.16mg-Cl_2/mg-N$ in average. The yields were relatively lower, but decay of organic chloramines were slower than those upon chlorination. Organic chloramines formed upon monochloramination decreased by 56% in average in 120 h. NOM with lower DOC/DON ratios formed more organic chloramines. NOM fractions such as hydrophobic, hydrophilic, transphilic, and colloidal did not significantly impact formation of organic chloramines. As the monochloramine doses increased, more organic chloramines were produced ($R^2=0.91$). Overestimation of disinfection capacity due to the formation of organic chloramines may not be concerns for monochloramine systems since only 6% of monochloramine could be converted to organic chloramines upon monochloramination of NOM.

Influence of Dissolved Organic Nitrogen on Organic Chloramine Formation during Chlorination (염소 소독시 DON이 유기성 클로라민 생성에 미치는 영향)

  • Lee, Won-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.481-484
    • /
    • 2011
  • Although formation of organic chloramines have been studied for decades, most of them have involved model organic compounds (e.g., amino acids) but not naturally occurring organic nitrogen in water. This study investigated formation of organic chloramines during chlorination of 16 natural organic matters (NOM) solutions which were isolated from surface water and contained dissolved organic nitrogen (DON). Organic chloramine yields per chlorine consumption was $0.25mg-Cl_2/mg-Cl_2$. Upon chlorination of NOM solutions, organic chloramines were rapidly formed within 10 minutes. The average organic chloramine yields upon addition of chlorine in to NOM solutions were $0.78mg-Cl_2/mg-DON$ at 10 minutes and $0.16mg-Cl_2/mg-DON$ at 24 hours. Organic chloramine yields increased as the dissolved organic carbon/dissolved organic nitrogen (DOC/DON) ratios decreased. Chlorination of molecular weight (10,000 Da) fractionated samples showed that the influence of DON molecular weights on the organic chloramine formation was minimal.

Removal of Dissolved Organic Nitrogen from Surface Water and Reclaimed Water by Coagulation (지표수 및 재이용수내 용존 유기질소의 응집처리)

  • Lee, Wontae;Choi, June-Seok;Oh, Hyun Je
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.729-734
    • /
    • 2012
  • During chlorination processes dissolved organic nitrogen (DON) can form toxic nitrogenous disinfection byproducts and organic chloramines which have little or no bactericidal activity. DON needs to be removed before chlorination processes to reduce the formation of those products. This study investigated the removal of DON from surface water and reclaimed water by coagulation with aluminum sulfate (alum) and a cationic polymer (polyDADMAC). Removal characteristics of dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm ($UVA_{254}$) were compared with that of DON. Coagulation with alum removed DON, DOC, and $UVA_{254}$ with similar trends, but the removal of $UVA_{254}$ was highest. A dual coagulation strategy of alum and cationic polymer improved the removal of DON. Coagulation with cationic polymer alone was not effective due to its narrow range of charge neutralization. DON in reclaimed water was easier to remove than that in surface water, and higher molecular weight fraction (>10,000 Da) of DON was preferentially removed.