• Title/Summary/Keyword: Organic Additives

Search Result 383, Processing Time 0.205 seconds

Removal of Semi-volatile Soil Organic Contaminants with Microwave and Additives (극초단파(마이크로파)와 첨가제를 이용한 오염토양 내 준휘발성 유기오염물질 제거)

  • Jeong, Sangjo;Choi, Hyungjin
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.67-77
    • /
    • 2013
  • To improve the energy efficiency of conventional thermal treatment, soil remediation with microwave has been studied. In this study, the remediation efficiency of contaminated soil with semi-volatile organic contaminants were evaluated with microwave oven and several additives such as water, formic acid, iron powder, sodium hydroxide (NaOH) solution, and activated carbon. For the experiment, loamy sand and sandy loam collected from Imjin river flood plain were intentionally contaminated with hexachlorobenzene and phenanthrene, respectively. The contaminated soils were treated with microwave facility and the mass removals of organic contaminants from soils were evaluated. Among additives that were added to increase the remediation efficiency, activated carbon and NaOH solution were more effective than water, iron powder, and formic acid. When 10 g of hexachlorobenzene (142.4 mg/kg-soil) or phenanthrene (2,138.8 mg/kg-soil) contaminated soil that mixed with 0.5 g iron powder, 0.5 g activated carbon and 1 ml 6.25 M NaOH solution were treated with microwave for 3 minutes, more than 95% of contaminants were removed. The degradation of hexachlorobenzene during microwave treatments with additives was confirmed by the detection of pentachlorobenzene and tetrachlorobenzene. Naphthalene and phenol were also detected as degradation products of phenanthrene during microwave treatment with additives. The results showed that adding a suitable amount of additives for microwave treatments fairly increased the efficiency of removing semi-volatile soil organic contaminants.

Organic additive effects in physical and electrical properties of electroplated Cu thin film

  • Lee, Yeon-Seung;Lee, Yong-Hyeok;Gang, Seong-Gyu;Ju, Hyeon-Jin;Na, Sa-Gyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.48.1-48.1
    • /
    • 2010
  • Cu has been used for metallic interconnects in ULSI applications because of its lower resistivity according to the scaling down of semiconductor devices. The resistivity of Cu lines will affect the RC delay and will limit signal propagation in integrated circuits. In this study, we investigated the characteristics of electroplated Cu films according to the variation of concentration of organic additives. The plating electrolyte composed of $CuSO_4{\cdot}5H_2O$, $H_2SO_4$ and HCl, was fixed. The sheet resistance was measured with a four-point probe and the material properties were investigated with XRD (X-ray Diffraction), AFM (Atomic Force Microscope), FE-SEM (Field Emission Scanning Electron Microscope) and XPS (X-ray Photoelectron Spectroscopy). From these experimental results, we found that the organic additives play an important role in formation of Cu film with lower resistivity by EPD.

  • PDF

Research and Application of Nano-particles as Oil Additives

  • Xue, Qunji;Liu, Weimin;Zhang, Zhijun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.265-266
    • /
    • 2002
  • Nano materials have great potential for development of advanced lubricating and protecting materials. Nano-particles capped by organic compound such as organic acid, dialkyldithiophosphate (DDP) are capable to disperse stably in lubricating oils, and are able to reduce wear and to increase load-carrying capacity.

  • PDF

Magnetic Properties of Thin Cu/Co Multilayers Made by Electrodeposition

  • Lee, Jung-Ju;Lee, Jin-Han;Hong, Kim-In
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.118-121
    • /
    • 2005
  • We have investigated the magnetic properties of electroplated thin Cu/Co multilayers by using electrolytes made of copper sulphate and cobalt sulphate and by applying alternating plating voltage. While the multilayers plated with pure electrolyte showed superparamagnetism, those plated with organic additives showed ferromagnetic behavior. These changes are attributed to the so-called 'self-annealing' effect and reduction of grain size caused by the organic additives.

Effect of Organic Processing Parameters in Non-aqueous Tape-casting on Dispersion Stability of Barium Titanate-Borosilicate Glass Based Suspensions (비수계 테잎성형공정의 유기공정변수의 변화에 따른 티탄산바륨-붕규산염유리계 현탁액의 분산안정성)

  • Yeo, Jeong-Gu;Choi, Sung-Churl
    • Korean Journal of Materials Research
    • /
    • v.13 no.11
    • /
    • pp.725-731
    • /
    • 2003
  • The effect of organic processing parameters on the dispersion stability of the BaTiO$_3$-based dielectric particles and borosilicate glass particulate suspensions was investigated in a system where organic solvents, dispersant, binder and modifier were used as processing additives in a low temperature cofired ceramic fabrication processes. Two- and three-component organic solvents were used to disperse ceramic particles and it was found the better stability in the particulate suspension prepared in a bi-solvent, which was consists of toluene and ethanol in a non-azeotropic composition. The addition amount of organic additives had a great impact on dispersion in the present investigation. The flow curves of the suspensions prepared with binder and modifier were fitted according to the power-law equation, which indicates that the internal structure of the suspension could be disturbed under the applied shear stress. Finally, the LTCC green tapes were successfully tape-cast based upon the optimum formulation of LTCC suspension and its microstructure was compared with that of the hard-agglomerates.

Investigation of the Effect of Solution Acidity and Organic Additives on the Electrodeposition of Trivalent Chromium Ions (3가크롬 이온의 전착 반응에 용액 산도 및 유기물 첨가제가 미치는 영향 연구)

  • Lee, Joo-Yul;Van Phuong, Nguyen;Kang, Dae-Keun;Kim, Man;Kwon, Sik-Chol
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.6
    • /
    • pp.297-303
    • /
    • 2010
  • The effect of solution acidity and organic additives, polyethylene glycol (PEG), on the trivalent chromium electroplating was systematically investigated in the view point of electroreduction of trivalent chromium ions and solution stability. It was found that solution acidity controlled at pH 2.5 showed the widest current range for bright electrodeposits in the presence of PEG additives, which reduced the local current intensification at high current densities. Through complex interaction between PEG additives and hydrogen ion, that is, solution acidity, electrode potential was moved in the negative direction in the bulk solution, while it shifted in the positive when electric potential was scanned. In conjunction with electrochemical quartz crystal microbalance (EQCM), it was found that PEG additives had a role in promoting the electron transfer to trivalent chromium ion complexes in bulk solution and their adsorption at the electrode surface as well as interfering with hydrogen ion reduction process below pH 2.5. The PEG additives developed the nodular morphology during electroreduction of trivalent chromium ions with the increase of solution acidity and enhanced its current efficiency by maintaining the consumption of complexant, formic acid, at low speed.

Effect of the bath composition on the surface appearance and the hardness of zinc deposits from the chloride bath (염화물욕에서 아연도금층의 표면외관과 경도에 미치는 욕조성의 영향)

  • 김영근;김명수
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.5
    • /
    • pp.339-348
    • /
    • 2000
  • The study was conducted on the effect of bath composition on the surface appearance, the hardness and the crystal orientation of zinc electrodeposits from the chloride bath. (1) The hardness of the zinc electrodeposits from the chloride bath was increased by suppressing mass transfer of zinc through adding the organic additives and the chlorine ion in the electrolyte. (2) The surface whiteness of zinc deposits was decreased due to the change of the preferred orientation from (002) , (103) to (101) , (100) through increasing the organic additives and chlorine ion in the electrolyte. (3) The addition of Cu, Sn, Ni or Co in the chloride bath elevated the hardness of the zinc deposits but darkened the surface whiteness. (4) The optimum condition of the organic additives and the chlorine ion for increasing the hardness of zinc deposits and preventing dark surface ranges 0.3 m1/1 to 0.4 m1/1 and 6.5 mol/1 to 6.8mol/l respectively.

  • PDF

Dispersion of Silicon Nitride Particles and Sintering Additives of AlN and Nd$_2$O$_3$ in Nonaqueous Suspending Media (비수계분산매체에서 질화규소와 소결첨가제 AlN 및 Nd$_2$O$_3$의 분산)

  • 김재원;백운규;윤경진
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.210-219
    • /
    • 1999
  • The fundamental dispersion property of Si2N4 and a combination of AlN and Nd2O3 as sintering additives in a variety of organic solvents such as alcohols, hydrocarbons, ketones, and ethers was investigated. The stabilization mechanism and interaction between organic functional groups of the various organic additives were studied to clarify the dispersibility of the ceramic particles in the nonaqueous suspending medium. characterization of the suspensions was based mainly on electrokinetic sonic amplitude(ESA) measurements and the flow curves obtained from the rheological studies as well as estimated Hamaker constants. It was found that the contribution of electrostatic repulsive forces to the Si3N4, AlN and Nd2O3 stabilization in organic media is appreciably greater than anticipated and is dependent on the physicochemical properties of organic solvents.

  • PDF

Effects of Organic Additives on Residual Stress and Surface Roughness of Electroplated Copper for Flexible PCB

  • Kim, Jongsoo;Kim, Heesan
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.154-158
    • /
    • 2007
  • For the application of flexible printed circuit board (FPCB), electroplated copper is required to have low surface roughness and residual stress. In the paper, the effects of surface roughness and residual stress of electroplated copper as thick as $8{\mu}m$ were studied on organic additives such as inhibitor, leveler and accelerator. Polyimide film coated with sputtered copper was used as a substrate. Surface roughness and surface morphology were measured by 3D-laser surface analysis and FESEM, respectively. Residual stress was calculated by Stoney's equation after measuring radius curvature of specimen. The addition of additives except high concentration of accelerator in the electrolyte decreased surface roughness of electroplated copper film. Such a tendency was explained by the function of additives among which the inhibitor and the leveler inhibit electroplating on a whole surface and prolusions, respectively. The accelerator plays a role in accelerating the electroplating in valley parts. The inhibitors and the leveler increased residual stress, whereas the accelerator decreased it. It was thought to be related with entrapped additives on electroplated copper film rather than the preferred orientation of electroplated copper film. The reason why additives lead to residual stress remains for the future work.

A study on the total cell count variation of commercial liquid seed by adding PAC and PAS (PAC 및 PAS 첨가에 따른 상업용 액상 종균제의 총균수 변화에 관한 연구)

  • 박미자;박경식;김승재
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.2
    • /
    • pp.79-90
    • /
    • 2001
  • Commercial liquid seeds are used for supplying active microbial flora to organic wastewater treatment plants of high feed-to-microorganism ratio and to maintain optimal microbial condition during unsteady state operation of the biological wastewater treatment plant. In addition to bacterial cells, the liquid weeds contain various additives for special purposes as well as organic substrates for energy supply. The additives give physical stability for the maintenance of microbial decomposition activity and ability to control the overgrowth of seed strains. In this work, the effects of addition of two kinds of typical substrate additives, poly aluminum chloride(PAC) and poly aluminum sulfate(PAS) on the consitutional total cell counts(CFU/ml) of four kinds of reorganization liquid seeds(RLS I, RLS II, RLS III and RLS IV) were studied experimentally. The addition of PAC and PAS gave negative effect on TCC constitution for the four seeds studied.

  • PDF