• Title/Summary/Keyword: Organic acid

Search Result 4,390, Processing Time 0.028 seconds

Characteristics of Organic Acid of Makgeolli by Yeast Strains Type (효모의 종류에 따른 막걸리의 유기산 특성 연구)

  • Bang, Chan Mi;Moon, Joon-Kwan;Kong, Hong Sik
    • Korean journal of food and cookery science
    • /
    • v.32 no.1
    • /
    • pp.44-49
    • /
    • 2016
  • Organic acid fermentation by yeast an important in the flavor and aroma. June 19th brewing each by each of the kinds of yeast (Instaferm, Instaferm red, La parisienne, La parisienne red, Fermivin, Safbrew wb-06, Safele s-04, Song chun) were analyzed organic acid during storage life. All yeast with reduced organic acid on 4 days. On 10 days, Instaferm, Instaferm red, La parisienne, La parisienne red, Fermivin yeast with the increased organic acid but on 19 days these reduced organic acid and maintain to 28 days. However use of Safbrew wb-06, Safele s-04, Song chun yeast the organic acid at storage and maintain organic acid content to 28 days. The variation of each organic acid during storage life characteristic of the yeast.

Modeling for the Recovery of Organic Acid by Bipolar Membrane Electrodialysis (바이폴라막 전기투석에 의한 유기산 회수에 관한 모델링)

  • Kim, Sang-Hun;Lee, Byung-Chul
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.476-482
    • /
    • 2006
  • This paper studied the recovery of organic acid from organic acid salt by using bipolar membrane electrodialysis. Acetic acid and lactic acid was used as for organic acid. Organic acid concentration, sodium hydroxide concentration and pH values were measured at various current density. Organic acid salt was effectively converted to organic acid and sodium hydroxide. Based on the experimental results, mathematical models were developed, in which time changes in ion balance were considered. Model predictions of organic acid concentration, sodium hydroxide concentration and pH values were in good agreement with the experimental data.

Characteristics of Organic Acid Degradation by Yeast (고농도 유기산폐수의 효모에 의한 분해연구)

  • 김석원;허병기;김은기
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.136-140
    • /
    • 1999
  • Characteristics of organic acid degradation by isolated yeast strain was investigated. Optimum initial pH was 5. Increase in cell mass was proportional to the decrease in organic acid degradation. Also no accumulation of byproduct was observed during degradation. Acetic acid degraded fast, followed by butyric acid and propionic acid in order. No significant substrate inhibition was observed up to 12 g/L of acetic acid 7 g/L of propionic acid, respectively. However, inhibition of butyric acid was significant above 4 g/L. Cell mass yield was 0.2-0.4 g cell/g acids and decreased at high decreased at high organic acid concentration. 95% of organic acid (7.5 g/L), corresponding to 13,000 ppm, was degraded in 30-40 hours.

  • PDF

Changes of ORganic Acid Contents on Heating Conditions of Fishes (어류의 가열조건에 따른 유기산 함유율의 변화)

  • 심기환;이종호;하영래;최상도;서권일;주옥수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.6
    • /
    • pp.939-944
    • /
    • 1994
  • The change of major organic acid contents were examined in mackerel, pacific yellow croaker and brown sole on heating conditions. The organic acid contents of mackerel were the higher that the others. The content of lactic acid was the highest in all samples commonly and that of succinic acid was second level and these organic acids were over 95% of total organic acid. The content of ${\alpha}-ketoglutaric$ acid was higher acid content was greater with higher heating temperature. Decreasing of organic acid content was higher at steamed and first heating than warmed and rewarmed.

  • PDF

Characteristics of Organic Acid Contents and Fermentation Solution of Prunus mume in South Korea

  • Kang, Hee-Kyoung;Kang, Hye-Rin;Lee, Young-Sang;Song, Hong-Seon
    • Korean Journal of Plant Resources
    • /
    • v.33 no.3
    • /
    • pp.194-199
    • /
    • 2020
  • This study was carried out to get the information of Plum tree (192 germplasm) collected in Korea, and to evaluate the organic acid contents and fermentation solution. The organic acid content of fruit was 50.9 ± 6.0 mg/g, and which was composed of 55.5% of citric acid, 43.4% of malic acid and 1.1% of oxalic acid, and showed large difference among germplasms. Oxalic acid and malic acid made no differences in organic acid content according to flesh color, whereas citric acid and total organic acid contents were highest in orange color and lowest in whitish green. Malic acid, citric acid and total organic acid contents did not show differences among fruit weight groups, but oxalic acid content was highest at fruit weight of 5.1 ~ 10.0 g and lowest at more than 20.1 g. The sugar content of fermentation solution of fruit was 55.7 ± 1.6 °Brix and the harvest rate was 116.7 ± 8.7%. The correlation coefficients among fruit weight, the sugar content (°Brix) and harvest rate of fermentation solution were very low, and there were correlations of r=-0.551⁎⁎ between fruit weight and oxalic acid, r=-0.767⁎⁎ between malic acid and citric acid, and r=0.834⁎⁎ between citric acid and total organic acid content.

The Effect of Phytase and Organic Acid on Growth Performance, Carcass Yield and Tibia Ash in Quails Fed Diets with Low Levels of Non-phytate Phosphorus

  • Sacakli, P.;Sehu, A.;Ergun, A.;Genc, B.;Selcuk, Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.2
    • /
    • pp.198-202
    • /
    • 2006
  • An experiment was conducted to investigate the effect of phytase, organic acids and their interaction on body weight gain, feed consumption, feed conversion ratio, carcass yield and tibia ash. A total of 680 three-day old Japanese quail chicks (Coturnix coturnix japonica) were assigned to 20 battery brooders, 34 chicks in each. The experimental period lasted 35 days. The treatment groups employed were: 1) a positive control which included 3.5 g available phosphorus (AP)/kg diet and 10 g Ca/kg diet; 2) a negative control which included 2 g AP/kg diet and 8 g Ca/kg diet, 3) negative control diet supplemented with either 300 FTU phytase/kg diet (phytase) or 4) 2.5 g organic acid (lactic acid+formic acid)/kg diet (organic acid); or 5) 300 FTU phytase/kg diet+2.5 g organic acid/kg diet (phytase+organic acid). All birds were fed with the positive control diet for a week and then transferred to the dietary treatments. At the end of the study, there were no differences (p>0.005) among the groups in body weight, weight gain, feed consumption, feed conversion ratio and carcass yield. Tibia ash, however, was reduced (p<0.001) for quails fed the negative control diet containing a low-level of AP compared to the positive control diet containing adequate AP. The addition of phytase, organic acid or phytase+organic acid to the diets containing the low-level of AP improved (p<0.001) tibia ash. On the other hand, an extra synergistic effect of phytase and organic acid on tibia ash was not determined. This study demonstrated that it may be possible to reduce supplemental level of inorganic P with phytase and/or organic acid supplementation for quail diets without adverse effect on performance and tibia ash.

Protected Organic Acid Blends as an Alternative to Antibiotics in Finishing Pigs

  • Upadhaya, S.D.;Lee, K.Y.;Kim, In Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1600-1607
    • /
    • 2014
  • A total of 120 finishing pigs ([Yorkshire${\times}$Landrace]${\times}$Duroc) with an average body weight (BW) of $49.72{\pm}1.72kg$ were used in 12-wk trial to evaluate the effects of protected organic acids on growth performance, nutrient digestibility, fecal micro flora, meat quality and fecal gas emission. Pigs were randomly allotted to one of three dietary treatments (10 replication pens with 4 pigs per pen) in a randomly complete block design based on their initial BW. Each dietary treatment consisted of: Control (CON/basal diet), OA1 (basal diet+0.1% organic acids) and OA2 (basal diet+0.2% organic acids). Dietary treatment with protected organic acid blends linearly improved (p<0.001) average daily gain during 0 to 6 week, 6 to 12 week as well as overall with the increase in their inclusion level in the diet. The dry matter, N, and energy digestibility was higher (linear effect, p<0.001) with the increase in the dose of protected organic acid blends during 12 week. During week 6, a decrease (linear effect, p = 0.01) in fecal ammonia contents was observed with the increase in the level of protected organic acid blends on d 3 and d 5 of fermentation. Moreover, acetic acid emission decreased linearly (p = 0.02) on d7 of fermentation with the increase in the level of protected organic acid blends. During 12 weeks, linear decrease (p<0.001) in fecal ammonia on d 3 and d 5 and acetic acid content on d 5 of fermentation was observed with the increase in the level of protected organic acid blends. Supplementation of protected organic acid blends linearly increased the longissimus muscle area with the increasing concentration of organic acids. Moreover, color of meat increased (linear effect, quadratic effect, p<0.001, p<0.002 respectively) and firmness of meat showed quadratic effect (p = 0.003) with the inclusion of increasing level of protected organic acid in the diet. During the 6 week, increment in the level of protected organic acid blends decreased (linear effect, p = 0.01) Escherichia coli (E. coli) counts and increased (linear effect, p = 0.004) Lactobacillus counts. During 12-wk of experimental trial, feces from pigs fed diet supplemented with organic acid blends showed linear reduction (p<0.001) of E. coli counts and the tendency of linear increase (p = 0.06) in Lactobacillus count with the increase in the level of organic acid blends. In conclusion, 0.2% protected organic acids blends positively affected growth performance, nutrient digestibility, fecal gas emission and meat quality in finishing pigs without any adverse effects on blood parameters.

Cultural Conditions for the Production of Organic Acid During (Aspergillus awamori var. kawachii에 의한 쌀 Koji 제조시 유기산의 생산조건)

  • 소경환
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.4
    • /
    • pp.287-293
    • /
    • 1993
  • This study was carried out to investigate the influences of cultural conditions of koji on the production of organic acid during rice-koji making by Aspergillus awamori var. kawachii which is now widely used as koji-mold in brewing Takju and Yakju in Korea. The optimum temperature for the germination of the conidia of the mold was 35'8, and the time required for germination at this temperature was 8 hours. Rapid germination occurred when the water content of steamed rice was above 40%, but germination retardation occurred markedly below 35%. The optimum cultural temperature for the production of organic acid was 32$^{\circ}C$, and the production of organic acid was markedly restricted at 36$^{\circ}C$ and 4$0^{\circ}C$. It was effective for the high production of both saccharogenic amylase and organic acid to shift the cultural temperature from initial 36$^{\circ}C$ to 32$^{\circ}C$ after 20~25 hours of cultivation. Initial water content suitable to the production of organic acid was 40% in steamed rice, but its production was markedly restricted below 30% of water content. When the quantity of conidial inoculation was too small, the production of organic acid was low in initial phase, but it was retrived at later period. Acid production was markedly restricted together with the increase in koji thickness.

  • PDF

Inhibitory Effects of Organic Acids against Pectinolytic Yeasts Isolated from Decayed Citrus (연부현상이 발생한 감귤로부터 분리한 효모에 대한 유기산의 생육 저해 효과)

  • Park, Eun-Jin;Kim, Soyeon
    • Korean journal of food and cookery science
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Organic acids are known as natural sanitizers. We examined the sanitizing effects of five organic acids (acetic acid, propionic acid, citric acid, malic acid, and lactic acid) and their persistence on three pectinolytic yeast strains isolated from decayed citrus, and the persistence of their sanitizing effects was determined during storage at $4^{\circ}C$ and $16^{\circ}C$. The 7~8 log CFU/mL of the mixed three yeast mixture was exposed to various concentrations of each organic acid for 1 min. The yeast mixtures decreased under detection limit(1 log CFU/mL) in 1% of acetic acid, followed by in 3% of propionic acid with the reduction of 5 log CFU/mL. The citric acid, malic acid, and lactic acid decreased the number of yeasts under detection limit at 7.5%. When treated with deionized water and 1~5% of organic acids were treated on the surfaces of citrus contaminated by yeasts, total numbers of the yeasts decreased under detection limit(3 log CFU) at 5% of acetic acid and 4 log CFU/piece at 5% propionic acid compared with deionized water. When treated with acetic acid and propionic acid on the stem ends of the contaminated citrus, total numbers of the yeasts significantly decreased 0.5 log CFU/piece at 3% of both organic acids. During storage at $4^{\circ}C$ and $16^{\circ}C$ for 20 days, total number of yeasts significantly decreased at 2% acetic acid compared with deionized water. This study suggested that organic acids could be used to sanitize microbial contaminants from citrus for storage and transportation.

Evaluation of Laver Growth Rate using Pyroligneous Acid (목초액유기산을 사용한 김의 성장률 평가)

  • Kim, U-Hang;Jo, Seong-Taek
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.11a
    • /
    • pp.105-108
    • /
    • 2004
  • Organic acid is made with carbonized organic acid that is produced from charcoal burning process. It is evaluated whether carbonized organic acid is able to removed Enteromorpha in the laboratory and Porphra aquaculture farm test. The optimum condition for Enteromorpha removal are revealed ten times dilution and ten second immersion. The mortality rate of Enteromorpha is $95\%$ and diatom-detaching rate is $100\%$ by the organic acid treatment. On the other hand, the mortality rate of Porphra is lower than $5%\$. It was measured that nitrogen was 0.175 mg/l and phosphorus was 0.0158 mg/l. Therefore, Concentration of nutrients were lower than being necessary to Porphra growth. Growth rate of Porphra was $12\%$ increased by organic acid treatment with carbonized organic acid added nutrient.

  • PDF