• Title/Summary/Keyword: Organic/inorganic hybrid coating solution

Search Result 38, Processing Time 0.035 seconds

Photochromic Properties of Spiropyran in Hard Coating Films Made by Sol-Gel Method (Sol-Gel 하드 코팅 막에서의 Spiropyran의 광 변색 특성)

  • Jeong, Sang Hyeok;Cho, Kyung In;Park, Jeong Yong;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.310-315
    • /
    • 2008
  • Organic-inorganic hybrid solutions were made using glycidoxypropyl trimethoxysilane (GPTMS) and vinyltriethoxysilane (VTES) as starting materials by sol-gel method. Photochromic coating solutions were prepared by mixing the solution of photochromic dye (spiropyran) dissolved in ethylacetate with the organic-inorganic hybrid solutions. Photochromic films were prepared on polycarbonate sheets by spin coating and cured for 2 h at $100^{\circ}C$. The resulting films exhibited a reversible color change upon irradiation with UV light from transparent to blue. The color-fading speed and pencil hardness of the coating films increased with increasing the GPTMS content in the coating solutions.

Preparation of UV-curable Ozone Resistance Coating Solutions using Fluoromonomer (불소 단량체를 이용한 자외선 경화형 내 오존성 코팅 막 제조)

  • Lee, Chang Ho;Lee, Sang Goo;Kim, Sung Rae;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.421-426
    • /
    • 2012
  • The effect of synthesis conditions such as various organic material and composition of organic-inorganic material in ozone resistance and surface characteristic of ultraviolet cured organic-inorganic hybrid coating film has been investigated. Organic-inorganic hybrid coating solution was prepared using tetraethoxysilane (TEOS), silane coupling agent methacryloyloxypropyltrimethoxysilane (MPTMS), 2,2,2-trifluoroethylmethacrylate, and various organic materials with acrylate group, bar-coated on substrates using applicator and densified by UV-curing. It was found that ozone resistance and surface hardness of the coating film was increased with contents of TEOS. It was also found that ozone resistance of coating film was increased with contents of 2,2,2-trifluoroethylmethacrylate. On the other hand, surface hardness was decreased with increase of 2,2,2-trifluoroethylmethacrylate. In addition, Surface hardness of coating film was increased with the addition of aliphatic urethane acrylate. It was also found that the transmittance of coating films was not influenced by content of TEOS and 2,2,2-trifluoroethylmethacrylate. In addition, the coating film exhibited high transmittance of above 90%.

Corrosion Resistance of Cold Rolled Steel coated Organic/inorganic Hybrid Coating Solution According to Heat Treatment Temperature (유/무기 하이브리드 코팅액에 의한 냉간압연강판의 열처리 온도에 따른 내식특성)

  • Nam, Ki-Woo;Kim, Jung-Ryang;Choi, Chang-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.56-59
    • /
    • 2011
  • The demand for cold rolled steel (CR) for structural members is gradually increasing. If no surface treatment (coating for corrosion resistance) for CR is conducted, its use is very limited because CR is vulnerable to corrosion. Therefore, we need to develop a coating solution to provide high corrosion resistance for CR. In this study, an organic/inorganic coating solution with Si and Ti (Si polysilicate 7 wt.% + Urethane 13 wt.% + Ti amorphous 0.5 wt.%; LR-0727(1)) was used to evaluate the corrosion resistance of CR under a salt spray test. The specimens with the LR-0727(1) coating were heat treated in a drying oven at $120{\sim}210^{\circ}C$for 5 min. The corrosion resistance was investigated using a salt spray test of 7 h. In addition, an adhesive test was conducted. Rust showed under a heat treatment of $150^{\circ}C$, but no vestiges were found over $160^{\circ}C$. The specimens with heat treatment at $160^{\circ}C$ or more did not experience delamination. From these results, it is considered that the temperature limit for optimum heat treatment is $160^{\circ}C$ considering energy efficiency.

Synthesis and Characteristics of Hard Coating Solution Using Colloidal Silica and Organic Silane through Sol-Gel Process (졸-겔 법에 의한 콜로이드 실리카와 유기 실란을 이용한 하드코팅 용액의 제조 및 특성)

  • Son, Dae Hee;Lee, Yun-Yi;Kim, Seong Jin;Hong, Seong-Soo;Lee, Gun-Dae;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.691-696
    • /
    • 2011
  • Organic-inorganic hybrid coating solutions were prepared by using a sol-gel method for transparent film. In this study, colloidal silica (CS) and alkoxy silane such as vinyltrimethoxysilane (VTMS), and [3-(methacryloyloxy)]propyltri methoxy silane (MAPTMS) were used in various conditions such as types of organic silane, weight ratios of CS to silane and reaction times. Coating solutions which were bar coated on the PET (polyethyleneterephthalate) film and cured were investigated on the chemical and physical properties. The pencil hardness and adhesion of coating films were increased with increasing the organic silane content in the coating solution compared to that of PMMA (polymethamethylcrylate) coating solution.

Improving the Corrosion Resistance of Cold-Rolled Carbon Steel by Treatment with a Hybrid Organic/Inorganic Coating Solution (유/무기 하이브리드 코팅액에 의한 냉간압연강판의 내식특성)

  • Kim, Jung-Ryang;Choi, Chang-Min;Nam, Ki-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.405-412
    • /
    • 2012
  • In the past, a very popular way to reduce the corrosion rate of zinc was the use of chemical conversion layers based on $Cr^{+6}$. However, the use of chromium salts is now restricted because of environmental protection legislation. Previous research investigated the optimum corrosion resistance of galvanized steel treated with an organic/inorganic solution containing Si. The result showed that the optimum corrosion resistance occurred by heat treatment of $190^{\circ}C$ in 5 min. In this study, one organic and three hybrid organic/inorganic coating solutions were applied to cold-rolled (CR) carbon steel. The coatings were then evaluated for corrosion resistance under a salt spray test. The coating solutions examined in this study consisted of urethane-only, urethane-Si, urethane-Si-Ti, and urethane-Si-Ti-epoxy. The results of the 7 h salt spray test showed that the urethane-Si-Ti and urethane-Si-Ti-epoxy coating solutions had superior corrosion resistance on CR steel.

Effect of Colloidal Silica on the Photochromic Properties of Hard Coating Films Prepared by Sol-Gel Method (Colloidal Silica가 Sol-Gel 하드 코팅 막의 광 변색 특성에 미치는 영향)

  • Shin, Yong Tak;Lee, Min Ji;Cho, Kyung Sook;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.535-540
    • /
    • 2011
  • Organic-inorganic hybrid coating solutions were prepared starting from colloidal silica, lanthanum nitrate and ${\gamma}$-glycidoxypropyl trimethoxysilane by the sol-gel method. Also, spiropyran-doped hard coating solutions were prepared by mixing the spiropyran solution, obtained after dissolving spiropyran dye into tetrahydrofuran solvent, with the organic-inorgnic hybrid coating solutions. The spiropyran-doped hard coating solutions were applied as a thin layer to polycarbonate sheets, and their photochromic properties were investigated. The effect of amount of colloidal silica added into the coating solutions was investigated on the photochromic properties of coating films. Both decoloration rate and pencil hardness of the coating films were increased with increasing the amounts of colloidal silica.

Corrosion Resistance of Galvanized Steel by Treating Modified Si Organic/Inorganic Hybrid Coating Solution (Si 변성 유/무기 하이브리드 코팅액에 의한 아연도금강판의 내식특성)

  • Seo, Hyun-Soo;Moon, Hee-Joon;Kim, Jung-Ryang;Kim, Jong-Soon;Ahn, Seok-Hwan;Moon, Chang-Kwon;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.32-38
    • /
    • 2011
  • Galvanized steel has gone through a chemical process to keep it from corroding. The steel gets coated in layers of zinc because rust will not attack this protective metal. For countless outdoor, marine, or industrial applications, galvanized steel is an essential fabrication component. The reduction of the corrosion rate of zinc is an important topic. In the past, a very popular way to reduce the corrosion rate of zinc was to use chemical conversion layers based on $Cr^{+6}$. However, a significant problem that has arisen is that the use of chromium salts is now restricted because of environmental protection legislation. Therefore, it is very important to develop new zinc surface treatments that are environmentally friendly to improve the corrosion resistance of zinc and adhesion with a final organic protective layer. In this study, a Urethane solution (only Urethane 20 wt.%; S-700) and an organic/inorganic solution with Si (Si polysilicate 10 wt.% + Urethane 10 wt.%; LRO-317) are used. Based on the salt spray test of 72 h, S-700 and LRO-317 had a superior effect for the corrosion resistance on EGI and HDGI, respectively.

Preparation and Characterization of Hybrid Ozone Resistance Coating Film Using Carbon Nanotube (탄소나노튜브를 이용한 하이브리드 내오존성 코팅 막의 제조 및 특성)

  • Kim, Sung Rae;Lee, Sang Goo;Yang, Jeong Min;Lee, Jong Dae
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.573-579
    • /
    • 2014
  • The effect of synthesis conditions such as carbon nanotube (CNT), 2,2,2-trifluoroethylmethacrylate (3FMA), and composition of organic-inorganic material in ozone resistance and surface characteristics of ultraviolet cured organic-inorganic hybrid coating film has been investigated. Coating solution was prepared using tetraethoxysilane (TEOS), silane coupling agent methacryloyloxypropyltrimethoxysilane (MPTMS), 3FMA, various organic materials with acrylate group, and CNT, then bar-coated on substrates using applicator, and densified by UV-curing. It was found that ozone resistance and adhesion of the coating film were strongly dependent upon contents of TEOS, 3FMA, and CNT. Especially, ozone resistance, adhesion, and surface hardness of coating film with CNT were improved, relatively. Ozone resistance of coating film with a high TEOS content was increased, but adhesion was decreased. In addition, it was also found that ozone resistance of coating film was increased with contents of 3FMA. On the other hand, surface hardness was decreased with increase of 3FMA.

Evaluation of the Corrosion Resistance of Zn-Coated Steel as a Function of the Temperature of the Cr-free Solution Used to Coat the Steel (Cr-free 코팅액에 의한 아연도금강판의 열처리 온도에 따른 내식특성)

  • Seo, Hyun-Soo;Moon, Hee-Joon;Kim, Jong-Soon;Ahn, Seok-Hwan;Moon, Chang-Kwon;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.60-66
    • /
    • 2010
  • Zinc has a number of characteristics that make it well suited for use as a coating to protecting iron and steel products from corrosion. Its excellent corrosion resistance in most environments accounts for its successful use as a protective coating on a variety of products and in many exposure conditions. The excellent field performance of zinc coatings results from their ability to form dense, adherent films that corrode at a rate that ranges from 1% to 10% of the corrosion rate of ferrous materials, depending on the environment. Recently, EU RoHS and EU ELV prohibited the use of materials that adversely affect the environment, such as Pb, Hg, Cd, and $Cr^{+6}$. In this study, environmentally-friendly, Cr-free solutions (epoxy solution, acrylic solution, and urethane solution S-700) and organic/inorganic solution with Si; LRO-317) were used to evaluate the corrosion resistance of zinc-coated steel subjected to a saltwater spray for 72 hours. The coating of urethane solution (S-700) was best among the three kinds of solution with heat treatment during five minutes at $190^{\circ}F$. Test specimens with S-700 and LRO-317 coating were heat treated in a drying oven at 170, 180, 190, 200, and $210^{\circ}C$ for five minutes. The results show that the optimum corrosion resistance was $190^{\circ}C$ in EGI and $170^{\circ}C$ in HDGI, respectively.

Corrosion Resistance Characteristics of Cold Rolled Steel by Cr-free Green Organic/Inorganic Hybrid Coating Solution (크롬 프리 친환경 유/무기 하이브리드 코팅액에 의한 냉연강판의 내식특성)

  • Nam, Ki Woo;Kim, Jung Ryang;Choi, Chang Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.33-38
    • /
    • 2013
  • In the past, a very popular method for reducing the corrosion on zinc involved the use of chemical conversion layer coatings based on $Cr^{+6}$. However, there is an important problem with using chromium salts as a result of restrictive environmental protection legislation. This study investigated the optimum condition for galvanized steel using an organic/inorganic solution with a Ti composition. In the case of a fixed heat treatment time, the corrosion resistance values of LR-0727(1) and LR-0727(2) were improved as the heat treatment temperature increased, and the optimum minimum temperature decreased with the heat treatment time. At the optimum heat treatment condition of two coating solutions, the heat treatment time of the LR-0727(1) solution was shorter than LR-0727(2) for the same heat treatment temperature. LR-0727(1) coated specimens did not show desquamation, and all of the specimens showed a good adhesive property. In contrast, in the case of the LR-0727(2) coated specimens, desquamation arose. Therefore, the adhesive property of LR-0727(1) was superior to that of LR-0727(2). The pencil hardness had a 3H average for all of the coating solutions and heat treatment conditions. In the case of a corrosion resistance test with boiling water, the coated specimens of LR-0727(1) were discolored, but LR-0727(2) was not. Finally, LR-0727(1) was more moisture proof than LR-0727(2).