• Title/Summary/Keyword: Ordered Multiple-Choice

Search Result 14, Processing Time 0.021 seconds

Present States, Methodological Features, and an Exemplar Study of the Research on Learning Progressions (학습 발달과정 연구의 현황, 방법론적 특징 및 연구 사례)

  • Maeng, Seungho;Seong, Yeonseon;Jang, Shinho
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.1
    • /
    • pp.161-180
    • /
    • 2013
  • The purpose of this paper is to introduce the current studies and research methods about Learning Progressions disseminated to several countries including the U.S. since 2006. It also provides a methodological base to investigate learning progressions in science by introducing a case study of learning progression conducted in Korea. For this study, we described several features of current studies on learning progressions in the U.S., and reported the common ways and sequences employed in examining learning progressions especially with respect to assessment for learning. Learning progressions are descriptions of developmental pathways of learning a topic, in which science knowledge is used in students' engaging in science practices. Each learning progression consists of upper anchor, lower anchor, and intermediate steps that connect both anchors. In investigating a learning progression, researchers usually utilize Wilson's four building blocks of assessment system based on the assessment triangle. This kind of method was also applied in investigating the learning progression for water cycle in this study. We discussed implication and consideration for the future research on learning progressions in science in Korea.

Investigation of Learning Progression for Dissolution and Solution Concepts (용해와 용액 개념에 대한 학습발달과정 조사)

  • Noh, Taehee;Lee, Jaewon;Yang, Chanho;Kang, Sukjin;Kang, Hunsik
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.2
    • /
    • pp.295-302
    • /
    • 2016
  • In this study, we investigated a learning progression focusing on $5^{th}$ to $9^{th}$ graders' performances with dissolution and solution concepts using the construct modeling approach. We designed a construct map describing hypothetical pathways of the concept development of dissolution and solution by analyzing both National Science Curricula and related studies. A conceptions test consisting of ordered multiple-choice items was developed and administered to 826 students. A revised construct map was derived from analyses of the results based on the partial credit model, a branch of polytomous item response theory. The sequence of dissolution and solution concepts presented in the current science curriculum was found to correspond with the learning progression of the students. However, the lower anchor, the concept of the homogeneity of particles in solution, and the factors affecting solubility were not consistent with the expected levels of the construct map. After revising the construct map, we proposed a learning progression for dissolution and solution concepts with five levels: Students of level 1 (the lower anchor) recognize the particles in the solution but misunderstand various concepts; Students of level 2 understand the homogeneity of particles in solution; Students of level 3 understand solubility and the conservation of particles during dissolution; Students of level 4 partially understand the interaction between particles; and Students of level 5 (the upper anchor) understand the interaction between particles and the factors affecting solubility.

Item Response Analysis of Energy as a Cross-Cutting Concept for Grades 3 to 9 (기초공통개념으로서 에너지에 대한 3~9학년 학생들의 문항 반응 분석)

  • Kim, Youngmin;Kang, Nam-Hwa;Kang, Hunsik;Maeng, Seungho;Lee, Jun-Ki
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.6
    • /
    • pp.815-833
    • /
    • 2016
  • This study investigated children's (grade 3 to 9) responses to assessment items on energy as a cross-cutting concept in order to get basic information for a learning progression. The assessment consisted of 8 ordered multiple-choice items at the contexts of electric circuit, mechanical energy of falling objects, phase change of matter, dissolution, biological phenomena of a lizard, food chain, radiative equilibrium between Sun and Earth, and the system of water cycling. Children's responses to each item were analyzed with using cross-tabulations in terms of grades and item option levels and Wright map and Differential item functioning based on Rasch modeled item response analysis. The results offered empirical evidence of children's development of understanding energy from relation between energy and its phenomena, types of energy, transfer and conversion of energy, towards conservation and equilibrium of energy for all of eight contexts. Children of each grade did not fully understand energy conservation. As grade goes up, their understandings of energy transfer and conversion were differentiated across the contexts and topics of energy. According to Rasch analysis, children had easier understanding of energy on dissolution and poorer understanding of energy on water cycling than that on other contexts. It was discussed and suggested that the results of this study help us organize science topics with regard to energy when developing new national science curriculum.

Validation of Learning Progressions for Earth's Motion and Solar System in Elementary grades: Focusing on Construct Validity and Consequential Validity (초등학생의 지구의 운동과 태양계 학습 발달과정의 타당성 검증: 구인 타당도 및 결과 타당도를 중심으로)

  • Lee, Kiyoung;Maeng, Seungho;Park, Young-Shin;Lee, Jeong-A;Oh, Hyunseok
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.1
    • /
    • pp.177-190
    • /
    • 2016
  • The purpose of this study is to validate learning progressions for Earth's motion and solar system from two different perspectives of validity. One is construct validity, that is whether a hypothetical pathway derived from our study of LPs is supported by empirical evidence of children's substantive development. The other is consequential validity, which refers to the impact of LP-based adaptive instruction on children's improved learning outcomes. For this purpose, 373 fifth-grade students and 17 teachers from six elementary schools in Seoul, Kangwon province, and Gwangju participated. We designed LP-based adaptive instruction modules delving into the unit of 'Solar system and stars.' We also employed 13 ordered multiple-choice items and analyzed the transitions of children's achievement levels based on the results of pre-test and post-test. For testing construct validity, 64 % of children in the experimental group showed improvement according to the hypothetical pathways. Rasch analysis also supports this results. For testing consequential validity, the analysis of covariance between experimental and control groups revealed that the improvement of experimental group is significantly higher than the control group (F=30.819, p=0.000), and positive transitions of children's achievement level in the experimental group are more dominant than in the control group. In addition, the findings of applying Rasch model reveal that the improvement of students' ability in the experimental group is significantly higher than that of the control group (F=11.632, p=0.001).