DOI QR코드

DOI QR Code

Item Response Analysis of Energy as a Cross-Cutting Concept for Grades 3 to 9

기초공통개념으로서 에너지에 대한 3~9학년 학생들의 문항 반응 분석

  • Received : 2016.07.21
  • Accepted : 2016.12.06
  • Published : 2016.12.31

Abstract

This study investigated children's (grade 3 to 9) responses to assessment items on energy as a cross-cutting concept in order to get basic information for a learning progression. The assessment consisted of 8 ordered multiple-choice items at the contexts of electric circuit, mechanical energy of falling objects, phase change of matter, dissolution, biological phenomena of a lizard, food chain, radiative equilibrium between Sun and Earth, and the system of water cycling. Children's responses to each item were analyzed with using cross-tabulations in terms of grades and item option levels and Wright map and Differential item functioning based on Rasch modeled item response analysis. The results offered empirical evidence of children's development of understanding energy from relation between energy and its phenomena, types of energy, transfer and conversion of energy, towards conservation and equilibrium of energy for all of eight contexts. Children of each grade did not fully understand energy conservation. As grade goes up, their understandings of energy transfer and conversion were differentiated across the contexts and topics of energy. According to Rasch analysis, children had easier understanding of energy on dissolution and poorer understanding of energy on water cycling than that on other contexts. It was discussed and suggested that the results of this study help us organize science topics with regard to energy when developing new national science curriculum.

이 연구에서는 기초공통개념으로서 에너지에 대한 학습발달과정연구의 기초 자료를 제공하기 위하여 3~9학년 학생들의 평가 문항 응답 결과를 분석하였다. 검사 문항은 전기 회로, 낙하 물체의 역학적 에너지, 물질의 상태 변화, 용해 현상, 생물체의 생명 현상, 먹이 사슬, 태양과 지구의 복사평형, 및 물의 순환계에서 에너지에 대한 이해를 조사하는 순위 선다형 문항으로 구성되었다. 학생들의 응답 결과는 학년별, 선택지 수준별 응답 빈도에 따라 교차분석을 실시하였고, Rasch 모델을 적용한 문항반응 분석으로서 Wright map 및 DIF 분석을 수행하였다. 연구 결과, 8가지 주제들에 대하여 에너지 이해의 발달과정은 현상과 에너지의 관련성을 인식하거나 에너지의 종류를 파악, 에너지의 이동과 전달을 인식, 에너지가 다른 형태로 전환 및 변환됨을 인식, 에너지의 보존을 인식하는 순서로 진행된다는 경험적 근거를 확보할 수 있었다. 전체 학년에 걸쳐서 공통적으로 8개 주제에 대하여 에너지 보존에 대한 이해가 부족하였다. 학년이 높아짐에 따라 에너지의 전달과 전환에 대한 이해 수준은 주제들마다 다소 차이가 있었다. Rasch 모델을 적용한 문항 반응을 분석한 결과 학생들은 다른 현상의 에너지에 비해 용해 현상의 에너지를 가장 쉬운 과제로 인식하였고 물의 순환 과정에서 에너지 이해를 가장 어려운 과제로 인식하였다. 이 연구의 결과는 에너지의 관점에서 각 주제들이 초중등 과학 교육과정의 어느 학년에, 몇 번째 단원에 어떤 방식으로 배치되어야 할 것인지는 경험적인 연구 자료로서 활용될 수 있으며, 새 과학 교육과정의 내용 체계를 구성할 때 고려할 수 있는 중요한 시사점이 될 수 있었다.

Keywords

References

  1. Bond, T. G., & Fox, C. M. (2007). Applying the Rasch model: Fundamental measurement in the human sciences (2nd edition). New York, NY: Routledge.
  2. Briggs, D. C., & Alonzo, A. C. (2012). The psychometric modeling of ordered multiple-choice item responses for diagnostic assessment with a learning progression. In A. C. Alonzo & A. W. Gotwals (Eds.), Learning progressions in science: Current challenges and future directions (pp. 293-316). Rotterdam, The Netherlands: Sense Publishers.
  3. Briggs, D. C., Alonzo, A. C., Schwab, C., & Wilson, M. (2006). Diagnostic assessment with ordered multiple-choice items. Educational Assessment, 11(1), 33-63. https://doi.org/10.1207/s15326977ea1101_2
  4. Corcoran, T., Mosher, F. A., & Rogat, A. (2009). Learning progressions in science: An evidence-based approach to reform. Consortium for Policy Research in Education Report #RR-63. Philadelphia, PA: Consortium for Policy Research in Education.
  5. Crocker, L., & Algina, J. (1986). Introduction to classical and modern test theory. Orlando, FL: Holt, Rinehart & Winston.
  6. Duschl, R., Maeng, S., & Sezen, A. (2011). Learning progressions and teaching sequences: A review and analysis. Studies in Science Education, 47, 123-182. https://doi.org/10.1080/03057267.2011.604476
  7. Jin, H., & Anderson, C. W. (2012). A learning progression for energy in socio-ecological systems. Journal of Research in Science Teaching, 49, 1149-1180. https://doi.org/10.1002/tea.21051
  8. Lee, H-S., & Liu, O. (2009). Assessing learning progression of energy concepts across middle school grades: The knowledge integration perspective. Science Education, 94. 665-688. https://doi.org/10.1002/sce.20382
  9. Maeng, S., & Lee, K. (2015). Cross-sectional item response analysis of geocognition assessment for the development of plate tectonics learning progressions: Rasch model. Journal of the Korean Earth Science Society, 35(1), 37-52.
  10. Maeng, S., Lee, K., Park, Y., Lee, J., & Oh, H. (2014). Development and validation of a learning progression for astronomical system using ordered multiple-choice assessment. Journal of the Korean Association for Science Education, 34(8), 703-718. https://doi.org/10.14697/jkase.2014.34.8.0703
  11. Maeng, S., Seong, Y., & Jang, S. (2013). Present states, methodological features, and an exemplar study of the research on learning progressions. Journal of the Korean Association for Science Education, 33(1), 161-180. https://doi.org/10.14697/jkase.2013.33.1.161
  12. Ministry of Education, Science, and Technology. (2011). 2009 revised science curriculum. Seoul: MEST.
  13. National Research Council (2001). Knowing what students know: The science and design of educational assessment. J.W. Pellegrino, N. Chudowsky, & R. Glaser (Eds.), Washington, DC: National Academy Press.
  14. National Research Council (2007). Taking science to school: Learning and teaching science in grades K-8. R.A. Duschl, H.A. Schweingruber, & A.W. Shouse (Eds.), Washington DC: The National Academies Press.
  15. National Research Council. (2012). A framework for k-12 science education: Practices, crosscutting concepts, and core ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.
  16. Neumann, K., Viering, T., Boone, W. J., & Fischer, H. E. (2013). Towards a learning progression of energy. Journal of Research in Science Teaching, 50, 162-188. https://doi.org/10.1002/tea.21061
  17. NGSS Lead States (2013). Next Generation Science Standards. Achieve, Inc.
  18. Noh, T., Lee, J. Yang, C., Kang, S., & Kang, H. (2016). Investigation of learning progression for dissolution and solution concepts. Journal of the Korean Association for Science Education, 36(2), 295-302. https://doi.org/10.14697/jkase.2016.36.2.0295
  19. Seong, Y., Maeng, S., & Jang, S. (2013). A learning progression for water cycle from fourth to sixth graders with ordered multiple-choice items. Elementary Science Education, 32(2), 139-158.
  20. Shin, N., Koh, E. J., Choi, C. I., & Jeong, D. H. (2014). Using a learning progression to characterize Korean secondary students' knowledge and submicroscopic representations of the particle nature of matter. Journal of Korean Association for Science Education, 34(5), 437-447. https://doi.org/10.14697/jkase.2014.34.5.0437
  21. Thompson, W. (1881). On the sources of energy in nature abailable to man for the production of mechanical effect. Science, 2(67), 475-478.
  22. Wilson, M. (2005). Constructing Measures: An Item Response Modeling Approach. Mahwah, NJ: Lawrence Erlbaum.
  23. Wilson, M. (2009). Measuring progressions: Assessment structures underlying a learning progression. Journal of Research in Science Teaching, 46, 716-730. https://doi.org/10.1002/tea.20318

Cited by

  1. 문항 반응 분석을 활용한 초등학생과 중학생의 시스템 사고 검사 도구 타당도 검증 vol.67, pp.2, 2016, https://doi.org/10.25152/ser.2019.67.2.249
  2. 에너지에 대한 초등학생들의 개념 탐색 vol.43, pp.3, 2019, https://doi.org/10.21796/jse.2019.43.3.284