• 제목/요약/키워드: Orbitofrontal cortex

검색결과 20건 처리시간 0.028초

Altered Functional Disconnectivity in Internet Addicts with Resting-State Functional Magnetic Resonance Imaging

  • Seok, Ji-Woo;Sohn, Jin-Hun
    • 대한인간공학회지
    • /
    • 제33권5호
    • /
    • pp.377-386
    • /
    • 2014
  • Objective: In this study, we used resting-state fMRI data to map differences in functional connectivity between a comprehensive set of 8 distinct cortical and subcortical brain regions in healthy controls and Internet addicts. We also investigated the relationship between resting state connectivity strength and the level of psychopathology (ex. score of internet addiction scale and score of Barratt impulsiveness scale). Background: There is a lot of evidence of relationship between Internet addiction and impaired inhibitory control. Clinical evidence suggests that Internet addicts have a high level of impulsivity as measured by behavioral task of response inhibition and a self report questionnaire. Method: 15 Internet addicts and 15 demographically similar non-addicts participated in the current resting-state fMRI experiment. For the connectivity analysis, regions of interests (ROIs) were defined based on the previous studies of addictions. Functional connectivity assessment for each subject was obtained by correlating time-series across the ROIs, resulting in $8{\times}8$ matrixs for each subject. Within-group, functional connectivity patterns were observed by entering the z maps of the ROIs of each subject into second-level one sample t test. Two sample t test was also performed to examine between group differences. Results: Between group, the analysis revealed that the connectivity in between the orbito frontal cortex and inferior parietal cortex, between orbito frontal cortex and putamen, between the orbito frontal cortex and anterior cingulate cortex, between the insula and anterior cingulate cortex, and between amydgala and insula was significantly stronger in control group than in the Internet addicts, while the connectivity in between the orbito frontal cortex and insula showed stronger negative correlation in the Internet addicts relative to control group (p < 0.001, uncorrected). No significant relationship between functional connectivity strength and current degree of Internet addiction and degree of impulsitivy was seen. Conclusion: This study found that Internet addicts had declined connectivity strength in the orbitofrontal cortex (OFC) and other regions (e.g., ACC, IPC, and insula) during resting-state. It may reflect deficits in the OFC function to process information from different area in the corticostriatal reward network. Application: The results might help to develop theoretical modeling of Internet addiction for Internet addiction discrimination.

강박장애 환자에서의 안와전두피질 용적의 2년 추적 연구 (2 Year Follow-Up Study of Orbitofrontal Cortex Volume in Obsessive Compulsive Disorder)

  • 김성년;강도형;유소영;노규식;장준환;최정석;하태현;권준수
    • 대한불안의학회지
    • /
    • 제2권2호
    • /
    • pp.94-100
    • /
    • 2006
  • Objective : This study was designed to examine the volumetric abnormality of orbitofrontal cortex (OFC) and its change after 2 years of pharmacotherapy in obsessive compulsive disorder (OCD) patients. Method : Volumetric magnetic resonance imaging studies were conducted in 15 OCD patients and 13 normal volunteers. For 2 years, all patients took at least one serotonin reuptake inhibitor and atypical antipsychotics were used as an augmentation therapy in most patients. The follow-up MRI studies were conducted after the pharmacotherapy and OFC volumes were measured by the manual region of interest method. Results : Bilateral OFC volumes of 15 OCD patients were significantly greater than those of the normal volunteers before the treatment. After 2 years of the treatment, significant decrease was observed in bilateral OFC volumes of OCD patients to the extent that left OFC volume of OCD patients was not different from that of the normal volunteers. Conclusion : This finding suggests that OFC is directly related to the pathophysiology of obsessive compulsive disorder.

  • PDF

Layer-specific serotonergic induction of long-term depression in the prefrontal cortex of rats

  • Shin, Dongchul;Cho, Kwang-Hyun;Joo, Kayoung;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권6호
    • /
    • pp.517-527
    • /
    • 2020
  • Layer 2/3 pyramidal neurons (L2/3 PyNs) of the cortex extend their basal dendrites near the soma and as apical dendritic tufts in layer 1, which mainly receive feedforward and feedback inputs, respectively. It is suggested that neuromodulators such as serotonin and acetylcholine may regulate the information flow between brain structures depending on the brain state. However, little is known about the dendritic compartment-specific induction of synaptic transmission in single PyNs. Here, we studied layer-specific serotonergic and cholinergic induction of long-term synaptic plasticity in L2/3 PyNs of the agranular insular cortex, a lateral component of the orbitofrontal cortex. Using FM1-43 dye unloading, we verified that local electrical stimulation to layers 1 (L1) and 3 (L3) activated axon terminals mostly located in L1 and perisomatic area (L2/3). Independent and AMPA receptor-mediated excitatory postsynaptic potential was evoked by local electrical stimulation of either L1 or L3. Application of serotonin (5-HT, 10 μM) induced activity-dependent longterm depression (LTD) in L2/3 but not in L1 inputs. LTD induced by 5-HT was blocked by the 5-HT2 receptor antagonist ketanserin, an NMDA receptor antagonist and by intracellular Ca2+ chelation. The 5-HT2 receptor agonist α-me-5-HT mimicked the LTD induced by 5-HT. However, the application of carbachol induced muscarinic receptor-dependent LTD in both inputs. The differential layer-specific induction of LTD by neuromodulators might play an important role in information processing mechanism of the prefrontal cortex.

안정상태 뇌 대사 활성도에 반영된 정신분열병 환자와 정상인에서의 감정이입과 기분인식 관련 뇌 영역 (Empathy and Mood Awareness Reflected in the Resting-State Brain Metabolic Activity in the Patients with Schizophrenia and Normal Subjects)

  • 박일호;전지원;정영철;석정호;박해정;이종두;김재진
    • 생물정신의학
    • /
    • 제14권2호
    • /
    • pp.129-141
    • /
    • 2007
  • Objectives : Empathy has been conceptualized as the ability of emotional resonance and perspective-taking. Emotional awareness has been proposed as the basis of empathy. In this study we examined the relationship between empathy and mood awareness and their neural correlates in resting-state activity in normal controls and patients with schizophrenia. Methods : Empathy and mood awareness scale scores were compared between 29 patients with schizophrenia and 21 normal controls by voxel-based t-tests and voxel-based correlation analyses of resting-state $^{18}F$-FDG PET images. Results : Empathy and mood labeling scale scores were significantly decreased in schizophrenic patients. Mood monitoring was positively correlated with empathy score in normal controls, but not in schizophrenic patients. In normal controls, empathy was positively correlated with resting-state activities in the intraparietal sulcus and mood monitoring was positively correlated with the temporal pole, frontopolar cortex, inferior temporal gyrus, entorhinal cortex and the subgenual prefrontal cortex resting activities. The orbitofrontal cortex resting activity was positively correlated with mood monitoring-related subgenual prefrontal cortex activity in the normal controls. Patients with schizophrenia showed decreased orbitofrontal resting activity and loss of its correlations with mood monitoring-related regional activities. Conclusion : This study showed that alteration in the resting-state activity in schizophrenia may reflect dysfunctional empathy and distorted characteristic of emotional awareness. However, the resting-state activity may not reflect the relationship between emotional awareness and empathy.

  • PDF

Prefrontal Cortex Activation during Diaphragmatic Breathing in Women with Fibromyalgia: An fNIRS Case Report

  • Hyunjoong Kim;Jihye Jung;Seungwon Lee
    • Physical Therapy Rehabilitation Science
    • /
    • 제12권3호
    • /
    • pp.334-339
    • /
    • 2023
  • Objective: The present study is designed to delve deeper into the realm of fibromyalgia (FM) symptom management by investigating the effects of diaphragmatic breathing on the prefrontal cortex (PFC) in women diagnosed with FM. Using functional near-infrared spectroscopy (fNIRS), the study aims to capture real-time PFC activation patterns during the practice of diaphragmatic breathing. The overarching objective is to identify and understand the underlying neural mechanisms that may contribute to the observed clinical benefits of this relaxation technique. Design: A case report Methods: To achieve this, a twofold approach was adopted: First, the patient's breathing patterns were meticulously examined to detect any aberrations. Following this, fNIRS was employed, focusing on the activation dynamics within the PFC. Results: Our examination unveiled a notable breathing pattern disorder inherent to the FM patient. More intriguingly, the fNIRS analysis offered compelling insights: the ventrolateral prefrontal cortex (VLPFC) displayed increased activation. In stark contrast, regions of the anterior prefrontal cortex (aPFC) and orbitofrontal cortex (OFC) manifested decreased activity, especially when benchmarked against typical activations seen in healthy adults. Conclusions: These findings, derived from a nuanced examination of FM, underscore the condition's multifaceted nature. They highlight the imperative to look beyond conventional symptomatology and appreciate the profound neurological and physiological intricacies that define FM.

The Upper Ascending Reticular Activating System between Intralaminar Thalamic Nuclei and Cerebral Cortex in the Human Brain

  • Jang, Sungho;Kwak, Soyoung
    • The Journal of Korean Physical Therapy
    • /
    • 제29권3호
    • /
    • pp.109-114
    • /
    • 2017
  • Purpose: The ascending reticular activating system (ARAS) is responsible for regulation of consciousness. In this study, using diffusion tensor imaging (DTI), we attempted to reconstruct the thalamocortical projections between the intralaminar thalamic nuclei and the frontoparietal cortex in normal subjects. Methods: DTI data were acquired in 24 healthy subjects and eight kinds of thalamocortical projections were reconstructed: the seed region of interest (ROI) - the intralaminar thalamic nuclei and the eight target ROIs - the medial prefrontal cortex, dorsolateral prefrontal cortex, ventrolateral prefrontal cortex, orbitofrontal cortex, premotor cortex, primary motor cortex, primary somatosensory cortex, and posterior parietal cortex. Results: The eight thalamocortical projections were reconstructed in each hemisphere and the pathways were visualized: projections to the prefrontal cortex ascended through the anterior limb and genu of the internal capsule and anterior corona radiata. Projections to the premotor cortex passed through the genu and posterior limb of the internal capsule and middle corona radiata; in contrast, projections to the primary motor cortex, primary somatosensory cortex, and posterior parietal cortex ascended through the posterior limb of the internal capsule. No significant difference in fractional anisotropy, mean diffusivity, and fiber volume of all reconstructed thalamocortical projections was observed between the right and left hemispheres (p>0.05). Conclusion: We reconstructed the thalamocortical projections between the intralaminar thalamic nuclei and the frontoparietal cortex in normal subjects. We believe that our findings would be useful to clinicians involved in the care of patients with impaired consciousness and for researchers in studies of the ARAS.

정상 MRI 소견을 보이는 외상성 뇌손상 환자에서 국소뇌혈류량의 이상 (Reduced Regional Cerebral Blood Flow in Patients with Traumatic Brain Injury Who Had No Structural Abnormalities on Magnetic Resonance Imaging : A Quantitative Evaluation of Tc-99m-ECD SPECT Findings)

  • 김남희;정영기
    • 생물정신의학
    • /
    • 제9권2호
    • /
    • pp.152-158
    • /
    • 2002
  • Background & Purpose:Neuropsychological disorders after traumatic brain injury(TBI) are poorly correlated with structural lesions detected by structural neuroimaging techniques such as computed tomography(CT) scan or magnetic resonance imaging(MRI). It is well known that patients with TBI have cognitive and behavioral disorders even in the absence of structural lesions of the brain. This study investigated whether there are abnormalities of regional cerebral blood flow(rCBF) in TBI patients without structural abnormality on MRI, using technetium 99m ethyl cysteinate dimer(Tc-99m-ECD) single photon emission computed tomography(SPECT) scans. Materials and Methods:Twenty-eight TBI patients without structural abnormality on MRI(mild, n=13/moderate, n=9/severe, n=6) and fifteen normal controls were scanned by SPECT. A voxel-based analysis using statistical parametric mapping(SPM) was performed to compare the patients with the normal controls. Results:rCBF was reduced in the right uncus and the right lateral orbitofrontal gyrus in the TBI patients. However, no increase of rCBF was noted in the patients in comparison to the normal controls. Conclusions:These results suggest that the TBI patients, even in the absence of structural lesion of the brain, may have dysfunction of the brain, particularly of the orbitofrontal and anterior pole of the temporal cortex. They also suggest that SPECT can be a useful method to identify brain dysfunctions in combination with structural brain imaging and neuropsychological tests.

  • PDF

후취자극 제어장치를 이용한 후각 fMRI의 기초연구 (The Preliminary Study of Odorant Induced fMRI using an Apparatus of Smell Stimulation Controller)

  • 강원석;백문영;이현용;신운재;정순철;민병찬;김재형;은충기;문치웅
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권2호
    • /
    • pp.157-163
    • /
    • 2001
  • 본 논문에서는 후취자극 제어장치를 이용하여 후각자극에 대한 인간의 뇌의 활성화 영역을 뇌기능자기공명영상(functional magnetic resonance imaging : fMRI)장치로 측정 또는 가시화하고 이의 임상적용에 대한 기초자료를 마련하고자 하였다. 우선 후각에 이상이 없고 코 수술 경험이 없는 오른손잡이 피험자 4명을 대상으로 5번에 걸쳐 Echo Plannar Imaging(EPI)에 의한 혈액산소농도의존(blood oxygen level dependent : BOLD)법을 이용하여 후각자극에 의한 뇌기능자기공명영상 실험을 수행하였다. 후각자극은 MRI 장치에서 사용할 수 있도록 제작된 후취제어장치를 사용하였으며, 제시된 향은 천연 향의 일종인 lavender-like fragrance를 사용하였다. 향의 제시는 후각의 피로도를 감안하여 3회의 휴식기관과 2회의 자극기간을 각 30초씩 번갈아 시행하였으며, 동시에 5초 간격으로 각 절편 당 30 영상을 연속적으로 획득하였다. Correlation법으로 0.4∼0.7의 문턱치(threshold)범위에서 통계 처리된 뇌의 활성화 영상은 EPI영상과 같은 부위의 T1 강조영상에 overlapping 시켰다. 호흡에 의한 artifact를 제거하기 위해 실험실에 만든 장치로 호흡을 측정하여 post-processing 할 때 반영하였다. 이렇게 얻어진 fMRI 영상의 신호변화를 관찰하여 활성 영역의 위치를 분석하였다. 그 결과 후각자극에 의해 뇌의 전두엽 피질(frontal cortex), 소뇌(cerebellum), 그리고 뇌교(pons)에서 활성화된 신호를 발견할 수 있었다. 또한, 측두엽(temporal lobe)과 뇌섬(insula)에서도 의미 있는 신호가 관찰되었다. 그러나, 일차 후각영역인 piriform cortex와 entorhinal cortex, amygdaloid complex, 그리고 이차후각영역인 orbitofrontal cotex에서는 그다지 많은 빈도로 신호가 발견되지 않았다. 결론적으로 BOLD법을 이용한 fMRI에 의하여 후각자극에 대한 뇌의 활성화영역을 관찰할 수 있었으며, 후각자극에 대한 뇌의 기능을 연구하는데 있어서 중요한 정량적 자료를 제공할 수 있다는 점을 확인할 수 있었다.

  • PDF

Regional Grey and White Matter Changes in the Brain Reward System Among Patients with Alcohol Dependency

  • Park, Mi-Sook;Seok, Ji-Woo;Kim, Eun-Ye;Noh, Ji-Hye;Sohn, Jin-Hun
    • 감성과학
    • /
    • 제20권4호
    • /
    • pp.113-126
    • /
    • 2017
  • The purpose of the study was to find grey matter (GM) and white matter (WM) volume reduction in the brain reward system among patients with alcohol dependency. This study investigated regional GM and WM in chronic alcoholic patients, focusing primarily on the reward system, including principal components of the mesocorticolimbic reward circuit as well as cortical areas with modulating and oversight functions. Sixteen abstinent long-term chronic alcoholic men and demographically matched 16 healthy control men participated in the study. Morphometric analysis was performed on magnetic resonance brain scans using voxel-based morphometry (VBM)-diffeomorphic Anatomical Registration through Exponentiated Liealgebra (DARTEL). We derived GM and WM volumes from total brain and cortical and subcortical reward-related structures. Morphometric analyses that revealed the total volume of GM and WM was reduced and cerebrospinal fluid (CSF) was increased in the alcohol group compared to control group. The pronounced volume reduction in the reward system was observed in the GM and WM of the nucleus accumbens (NAc), GM of the amygdala, GM and WM of the hippocampus, WM of the thalamus, GM and WM of the insula, GM of the dorsolateral prefrontal cortex (DLPFC), GM of the orbitofrontal cortex (OFC), GM of the cingulate cortex (CC), GM and WM of the parahippocampal gyrus in the alcohol group. We identified volume reductions in WM as well as GM of reward system in the patients with alcohol dependency. These structural deficits in the reward system elucidate underlying impairment in the emotional and cognitive processing in alcoholism.

Voxel-wise Mapping of Functional Magnetic Resonance Imaging in Impression Formation

  • Jeesung Ahn;Yoonjin Nah;Inwhan Ko;Sanghoon Han
    • 감성과학
    • /
    • 제25권4호
    • /
    • pp.77-94
    • /
    • 2022
  • Social interactions often involve encountering inconsistent information about social others. We conducted a functional magnetic resonance imaging (fMRI) study to comprehensively investigate voxel-wise temporal dynamics showing how impressions are anchored and/or adjusted in response to inconsistent social information. The participants performed a social impression task inside an fMRI scanner in which they were shown a male face, together with a series of four adjectives that described the depicted person's personality traits, successively presented beneath the image of the face. Participants were asked to rate their impressions of the person at the end of each trial on a scale of 1 to 8 (where 1 is most negative and 8 is most positive). We established two hypothetical models that represented two temporal patterns of voxel activity: Model 1 featured decreasing patterns of activity towards the end of each trial, anchoring impressions to initially presented information, and Model 2 showed increasing patterns of activity toward the end of each trial, where impressions were being adjusted using new and inconsistent information. Our data-driven model fitting analyses showed that the temporal activity patterns of voxels within the ventral anterior cingulate cortex, medial orbitofrontal cortex, posterior cingulate cortex, amygdala, and fusiform gyrus fit Model 1 (i.e., they were more involved in anchoring first impressions) better than they did Model 2 (i.e., showing impression adjustment). Conversely, voxel-wise neural activity within dorsal ACC and lateral OFC fit Model 2 better than it did Model 1, as it was more likely to be involved in processing new, inconsistent information and adjusting impressions in response. Our novel approach to model fitting analysis replicated previous impression-related neuroscientific findings, furthering the understanding of neural and temporal dynamics of impression processing, particularly with reference to functionally segmenting each region of interest based on relative involvement in impression anchoring as opposed to adjustment.