• Title/Summary/Keyword: Orbiting scroll

Search Result 41, Processing Time 0.023 seconds

Performance Comparison of Various Types of $CO_2$ Compressors for Heat Pump Water Heater Application

  • Kim, Hyun-Jin;Kim, Woo-Young;Ahn, Jong-Min
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.4
    • /
    • pp.115-122
    • /
    • 2009
  • Numerical simulations for scroll, two-stage twin rotary, and two-cylinder reciprocating compressors have been carried out to understand the effectiveness of each type compressor for heat pump water heater application using $CO_2$ as refrigerant. For suction pressure of 3.5 MPa and discharge pressure of 9 MPa, clearance volume ratio of the reciprocating compressor needs to be about 5% or less to have the volumetric efficiency comparable to that of the scroll compressor with tip clearance of $5\;{\mu}m$. Volumetric efficiency of the scroll compressor is quite sensitive to tip clearance. Adiabatic efficiency of the twin rotary compressor was calculated to be the lowest among the three types, and the most severe drawback of the $CO_2$ scroll compressor was a significant increase in the mechanical loss at the thrust surface supporting the orbiting scroll member. While the scroll compressor showed very smooth torque load variation, peak-to-peak torque variations of the twin rotary and two-cylinder reciprocating compressors were about 50% and 250%, respectively.

Dynamic Behavior Analysis of Scroll Compressor Considering Leakage Flow (누설 유동을 고려한 스크롤 압축기의 동적 거동 해석)

  • Jeong, Young-Chul;Won, Seong-Gyu;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.417-420
    • /
    • 2005
  • This paper presents an analytical method to evaluate the dynamic behavior of the scroll compressor. Unbalanced forces and moments act on the compressor body because of the reaction forces acting on rotating components like the orbiting scroll, Oldham coupling ring, and the crank shaft. The vibration of the compressor is induced by the forces and the moments. In this paper, through modeling of the leakage flow, solving the forces from the equations of motion of the moving parts, the analysis of vibration of the compressor was performed. According to the operating condition, the variation of acceleration of the compressor body were calculated and compared.

  • PDF

Minimization of Tilting Moment of Co-Rotating Scroll Compressor by Design of Back Pressure Chamber (배압실의 설계를 통한 상호회전 스크롤 압축기의 전복 모멘트 최소화)

  • Gu, In-Hoe;Park, Jin-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1305-1313
    • /
    • 2000
  • In a co-rotating scroll compressor, both scrolls rotate on their fixed axes contrary to the conventional orbiting type scroll machine. This implies fixed locations and directions of the gas pressure force and sealing force. Because the tilting moment is mainly caused by interplay between the resultant force of above forces and bearing reaction force, the variation during one cycle is relatively small. Under real operation, this moment is balanced by the restoring moment created by the reaction between the baseplate and thrust bearing or between the scroll tip and baseplate. If these reactions become too large, greater torque is required due to increased friction in addition to the wear of mating parts. Consequently, appropriate study and minimization of tilting moment is important in the design of scroll machines. In this study, taking into account of the small variation of tilting moment during one cycle, we minimize the moment and thrust bearing reaction force by a properly designed back pressure chamber. As a result, for both the driving and driven scrolls, the tilting moment and the reaction force of thrust bearing can be minimized. And the stability is improved for all cases.

Design of a Scroll Expander for Waste Heat Recovery from Engine Coolant (엔진 냉각수 폐열 회수용 스크롤 팽창기 설계)

  • Yu, Je-Seung;Kim, Hyun-Jae;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.815-820
    • /
    • 2011
  • A scroll expander was designed for an energy converter from waste heat of IC engine coolant to useful shaft work. The scroll expander is to run in a Rankine cycle which receives heat energy transferred from engine coolant circulation cycle. The working fluid was Ethanol. For axial compliance, a back pressure chamber was provided on the rear side of the orbiting scroll. Lubrication oil was delivered by a positive displacement type oil pump driven by the shaft rotation. Performance analysis on the scroll expander showed that the expander efficiency was 63.4%. It extracts shaft power of 0.6 kW out of engine coolant waste heat of 17.5 kW, resulting in the Rankine cycle efficiency of 3.43%.

Thermal Deformation Analysis of a Scroll Compressor for Automobile according to the Change of Materials (소재변경에 따른 차량용 스크롤압축기의 열변형 해석)

  • Lee, Hyoungwook;Lee, Geunan;Kim, Jeongbae
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.67-74
    • /
    • 2014
  • An inverter scroll compressor is used for the air conditioning in cars. Scrolls would be changed from the aluminum material to the magnesium material in order to satisfy the light weight trends of cars. The material changing influences on the scroll dimensions particularly the gap between two scrolls. Since the larger gap declines the performance of the compression, the gap between wraps of scrolls or the gap between wraps of scrolls to the plate of the opposite scroll is regarded as an important design variable. This paper is focused on the effects of the thermal stress due to the materials changing. The temperature difference between the inlet and the outlet is about 60 degrees and the highest operating temperature in the compressor is less than 110 degrees. The level of thermal stresses in the magnesium scroll is less than the result from aluminum one. The trend of the deformation is revealed that the normal directional deformation is 2 times lager than the in-plane directional deformation. Therefore the gap between the top of the wrap to the plate of the opposite scroll become more important than the other gaps. The orbiting scroll deforms larger than the fixed scroll by the thermal stresses. The deformation of the magnesium scroll is about 10% lager than that of the aluminum scroll. This value is similar to the ratio of the coefficients of thermal expansion of two materials. At the initial design stage, the results give many useful guides to engineers to propose gaps between parts.

Experimental Study on Performance Characteristics of Air Driven Scroll Expander (공기구동 스크롤 팽창기 성능특성에 관한 실험적 연구)

  • Song, Wonbin;Kwak, Chul Woo;Kim, Tae Kyun;Kim, Ju Young;Kim, Kwang Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.50-54
    • /
    • 2016
  • The performance of a scroll expander is the most important factor for the efficiency of small scale Organic Rankine cycle waste heat power generation systems. In this research, a scroll compressor was purchased and operated in reverse to function as a scroll expander. With air as a working fluid, a series of performance test were conducted on this expander by varying the inlet and outlet pressure. Secondly, We have tested through 2000 to 3500 rpm rotational speed to find the maximum power and efficiency of the expander. And last, It was observed in the initial experiments that the design of the expander's orbiting scroll wrap partially blocked the fluid intake which may have caused unnecessary flow resistance. To verify this theory, a small part of the scroll wrap was removed and the performance test was redone. It was observed that the lower back pressure assure the higher efficiency and power of expander and the rotational speed that shows maximum adiabetic efficiency of scroll expander is 69% at 2500 rpm. And by modified wrap of the scroll, we could get volume flow rate for 13% to 19% and power for 5% to 18% increased. But the maximum efficiency of the modified scroll was decreased 8%.

Theoretical Analysis of Lubrication for the Hermetic Scroll Compressor with Back-Pressure Chamber (배압실을 갖는 밀폐형 스크롤 압축기의 윤활 특성에 관한 이론적 해석)

  • 심현해;김광호;이홍원;소순갑
    • Tribology and Lubricants
    • /
    • v.10 no.1
    • /
    • pp.69-77
    • /
    • 1994
  • Oil flow pass of hermetic scroll compressor with back pressure chamber was described. Dynamic analysis was preceded in order to obtain the loads on the lubricating contacts. The mobility method of dynamically loaded journal bearings was applied to the crank jornal bearing and lower main bearing, and they could be designed to operate under fluid film lubrication. From the consideration of their film thicknesses and oil flow rates, optimal bearing clearances or other bearing dimensions could be assessed. The major friction loss was calculated to be from the axial force between the two scrolls. Therefore, it was suggested that the designers should be careful to reduce the over-turning moment on the orbiting scroll.

The study on the quality characteristics factor of medium-sized orbit scroll (중형 선회 스크롤의 품질 특성 인자에 대한 연구)

  • Kim, Jae-Gi;Lim, Jeng-Taek;Kang, Soon-Kook;Park, Jong-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.718-723
    • /
    • 2016
  • The use of the scroll compressor in the air conditioning of medium-sized vehicles has increased because of its low torque fluctuation, high energy efficiency and low noise. In addition, the main components of the compressor have been changed from steel to aluminum to reduce its weight, following studies on the constituent materials. The processing precision of the fixed scroll and orbiting involute scroll wrap of the scroll compressor must be below $10{\mu}m$. To ensure this, the surface roughness and contour tolerance are measured. To improve the hardness of the orbiting scrolls using aluminum subjected to anodizing treatment and as the base material, we used a sealing treatment and measured the resulting characteristics. The aluminum materials were made of an Al-Mg-Cu based alloy including small amounts of Ni, Fe, and Zn. The surface roughness was less than $3{\mu}m$ and the processing accuracy was within $10{\mu}m$. Also, the hardness of the nanodiamonds with CNTs used in the sealing treatment was more than 450. This was found to improve the hardness of the material by 50% or more compared to the water sealing treatment and there was little difference between the use of carbon nanotubes and nanodiamonds as sealing materials.

Characteristics of Flank and Tip Seal Leakage in a Scroll Compressor for Air-Conditioners (공기조화기용 스크롤 압축기의 플랭크 및 팁실 누설특성)

  • Youn, Young;Kim, Yong-Chan;Min, Man-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.2
    • /
    • pp.134-143
    • /
    • 2001
  • This paper presents the characteristics of flank and tip seal leakage in a scroll compressor for air-conditioners with R-22 under actual operating conditions. It is well known that the leakage has significant effect on the performance of the scroll compressor. Experiments were performed by using indirect method for measuring mass flow rate passing through flank and tip seal under actual operating conditions, In addition, an analytical model for tip seal leakage was developed to investigate tangential and radial leakage observed at grooves and contact points of tip seals. For low oil concentration, theoretical results were compared with experimental data to verify the analytical model. As a result, leakages through flank and tip seal parts were evaluated as afunction of pressure ratio, orbiting angle, discharge pressure, tip clearance, and leakage point. It was also found that the tip seal leakage was considerable even though the tip seal provided adequate sealing effect.

  • PDF

Design of Scroll Expander for Electric Power Generation System using Organic Rankine Cycle with Biomass Energy Source (바이오매스를 에너지원으로 하는 유기냉매 사이클 스크롤 팽창기 발전 장치 설계)

  • Moon, J.H.;Yu, J.S.;Kim, H.J.;Cho, N.J.
    • Journal of Power System Engineering
    • /
    • v.16 no.4
    • /
    • pp.30-36
    • /
    • 2012
  • A scroll expander has been designed to produce a shaft power from a R134a Rankine cycle for electricity generation. Heat was supplied to the Rankine cycle through a heat exchanger, which received heat from another cycle of water. In the water cycle, water was heated up in a boiler using biogenic solid fuel. The designed scroll expander was a horizontal type, and a trochoidal oil pump was employed for oil supply to bearings and Oldham-ring keys. For axial compliance, a back pressure chamber was created on the backside of the orbiting scroll base plate. Numerical study has been carried out to estimate the performance of the designed scroll expander. The expander was estimated to produce the shaft power of about 2.9 kW from a heat supply of 36 kW, when the temperature of R134a was $80^{\circ}C$ and $35^{\circ}C$ at the evaporator and condenser of the Rankine cycle, respectively. The expander efficiency was about 70.5%. When the amount of heat supply varied in the ranges of 7.5~55 kW, the expander efficiency changed in the range of 45.6~70.5%, showing a peak efficiency of 70.5% at the design shaft speed.