• Title/Summary/Keyword: Orbital overlap

Search Result 48, Processing Time 0.023 seconds

MO Studies of Configuration and Conformation (XV). Through-Space and Through-Bond Interactions In Ethylene Diamine (배치와 형태에 관한 분자궤도론적 연구 (제15보). 에틸렌 디아민의 Through-Space 및 Through-Bond 상호작용)

  • Ikchoon Lee;Chang Kook Sohn;Chang Hyun Song
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.65-72
    • /
    • 1982
  • STO-3G level computations were performed on n-propylamine, n-propylamine radical and cis-and trans-ethylene diamines in order to investigate structural contributions of (n${\pi}$/m) and (n-${\sigma}^*$) structures to the energy variations accompanying the conformational changes. It was found that (5${\pi}$/5) and (4${\pi}$/4) structures had attractive and repulsive nonbonded interactions, respectively, which were approximately additive. anti(n-${\sigma}^*$) structures had more stabilzing hyperconjugative interactions than syn(n-${\sigma}^*$) structures, but due to the large internuclear repulsion the net effect was destabilizing inthe former in contrast with the net stabilizing contribution in the latter. Moreover it was found that the stabilizing ${\pi}$-nonbond structure, (5${\pi}$/5) was always cooperatively reinforced by the more stabilizing anti(n-${\sigma}^*$) interaction, whereas the destabilizing (4${\pi}$/4) structure was accompanied by the less stabilizing syn(n-${\sigma}^*$) interaction. This type of cooperativity was found general through-bond interaction of the terminal lone pair lobes split the energy levels into two, $n_+ = \frac{1}{\sqrt{2}}(n_1 + n_2)$ and $n_- = \frac{1}{\sqrt{2}}(n_1 - n_2)$, the latter being the lower level, which can be shown using simple overlap patterns of the two lobes with a common vicinal ${\sigma}^*$ orbital.

  • PDF

Photochemical Reactivity of Chromium(III) Complexes (Chromium(III) 錯物의 光化學的 反應性)

  • Jong-Jae Chung;Jung-Ui Hwang;Jong-Ha Choi
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.181-187
    • /
    • 1986
  • It is shown that the substitutive ligand on the photochemical substitution reactions of $trans-Cr^{Ⅲ}N_4XY$ complexes is predicted by considering the total stabilization energy of the hypothetical primary intermediates resulting from the loss of one ligand. The total stabilization energy and one electron energy level of d-orbital are calculated within the framework of angular overlap model. According to the calculated results, the intermediates with larger total stabilization energy are, as expected, more easily produced. Consequently, the relative values of the total stabilization energy are used to decide which of the ligands in $trans-Cr^{Ⅲ}N_4XY$ complexes is preferentially labilized on the lowest energy d-d irradiation. The prediction for the leaving ligand on the photoaquation of $trans-Cr^{Ⅲ}N_4XY$ complexes is consistent.

  • PDF

Molecular Orbital Interpretation on the Inhibitory Effect of the Ni(Ⅱ) Complexes with Polyamines and Imidazole Derivatives (Polyamine류와 Imidazole 유도체가 배위된 Ni(Ⅱ) 착물의 저해 효과에 관한 분자궤도함수론적 해석)

  • Kim, Jung-Sung;Song, Young-Dae
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.2
    • /
    • pp.123-128
    • /
    • 2004
  • Quantum chemical quantities, enthalpy of formation(${\Delta}H_f$), HOMO and LUMO energy, and dipole moment(${\mu}_D$) were acquired by AM1, PM3, and ZINDO/1 methods for polyamines and imidazole derivatives. The investigation of the inhibitory activity on some Ni(II) complexes with polyamines and imidazole derivatives is performed by ZINDO/1 calculations. It was found that experimental inhibitory activity(IA) appeared when the value of net charge and enthalpy of formation were over 0.03 and -300 eV, respectively for Ni(II) complexes. These results showed that the Ni(II) complexes have exception on the following very unstable compounds: square pyramidal [Ni(dpt)(tn)])]$^{2+}$(dpt=3,3'-diaminodipropylamine)(tn=1,3-diaminopropane) and distorted tetrahedral [Ni(N-PropIm))$_2$(NCS))$_2$](N-PropIm=N-Propylimidazole).

Magnetic Exchange Interactions in a 2D Grid-like Copper(II) Polymer with Bridging End-on Cyanato and Pyrazine Ligands: A DFT Study

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1704-1710
    • /
    • 2010
  • The structure of a 2D grid-like copper(II) complex [Cu$(NCO)_2$(pyz)](pyz=pyrazine) (1) consists of 1D chains of Cu-pyz units connected by double end-on (EO) cyanato bridges. Each Cu(II) ion has a distorted octahedral coordination, completed by the four EO cyanato and two pyrazine ligands. Magnetic interactions through EO cyanato and pyrazine bridges in 1 are discussed on the basis of DFT broken-symmetry calculations at the B3LYP level. For model dicopper(II) complexes I (bridged by cyanato) and II (bridged by pyrazine), electronic structure calculations reproduce very well the experimental couplings for the S = 1/2 ferromagnetic and antiferromagnetic exchange-coupled 2D system: the calculated exchange parameters J are +1.25 $cm^{-1}$ and -3.07 $cm^{-1}$ for I and II, respectively. The $\sigma$ orbital interactions between the Cu $x^2-y^2$ magnetic orbitals and the nitrogen lone-pair orbitals of pyrazine are analyzed from the viewpoint of through-bond interaction. The energy splitting of 0.106 eV between two SOMOs indicates that the superexchange interaction should be antiferromagnetic in II. On the other hand, there are no bridging orbitals that efficiently connect the two copper(II) magnetic orbitals in I because the HOMOs of the basal-apical NCO bridge do not play a role in the formation of overlap interaction pathway. The energy separation in the pair of SOMOs of I is calculated to be very small (0.054 eV). This result is consistent with the occurrence of weakly ferromagnetic properties in I.

Kinetics and Stereochemistry of CO Substitution Reactions of Half-Open Chromocene Carbonyls(Ⅲ): Reactions of $Cp^{*}(\eta^{5}-C_{5}H_{7})$CrCO and Phosphines

  • Jong-Jae Chung;Byung-Gill Roh;Yu-Chul Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.549-554
    • /
    • 1993
  • The CO substitution reactions in the complex, $Cp^*(C_5H_7)$CrCO with $PR_3(PR_3=PMePh_2,\;P(OCH_3)_3,\;PMe_2Ph)$ were investigated spectrophotometrically at various temperatures. For the reaction rates, it was suggested that the CO substitution reaction took place by first-order (dissociative) pathway. Activation parameters in decaline are ${\Delta}H^{\neq}= 21.99{\pm}2.4$ kcal/mol, ${\Delta}S^{\neq}= 8.9{\pm}7.1$ cal/mol·k. Unusually low value of ${\Delta}S^{\neq}$, suggested an ${\eta}^5-S{\to}\;{\eta}^5$-U conversion of the pentadienyl ligand. At various temperature, the rates of reaction for the Cp(pdl)CrCO complexes increase in the order $Cp^*(C_5H_7)$-CrCO < Cp$(C_5H_7)$CrCO < Cp(2,4-$C_5H_{11}$)CrCO, which can be attributed to the usual steric acceration or electronic influence for the ligand substitution of metal complexes. This suggestion was confirmed by the extended-Huckel molecular orbital (EHMO) calculations, which revealed that the energy of $[Cp^*(U-C_5H_7)Cr]^{\neq}$ transition state is about 4.93 kcal/mol lower than that of [Cp(S-$C_5H_7)Cr]^{\neq}$ transition state, and the arrangement of the overlap populations between Cr and the carbon of CO is $Cp^*(C_5H_7)$CrCO > Cp($C_5H_7$)CrCO > Cp(2,4-$C_7H_{11}$)CrCO.

InGaZnO active layer 두께에 따른 thin-film transistor 전기적인 영향

  • U, Chang-Ho;Kim, Yeong-Lee;An, Cheol-Hyeon;Kim, Dong-Chan;Gong, Bo-Hyeon;Bae, Yeong-Suk;Seo, Dong-Gyu;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.5-5
    • /
    • 2009
  • Thin-film-transistors (TFTs) that can be prepared at low temperatures have attracted much attention because of the great potential for transparent and flexible electronics. One of the mainstreams in this field is the use of organic semiconductors such as pentacene. But device performance of the organic TFTs is still limited due to low field-effect mobility and rapid degradation after exposing to air. Alternative approach is the use of amorphous oxide semiconductors as a channel. Amorphous oxide semiconductors (AOSs) based TFTs showed the fast technological development, because AOS films can be fabricated at room temperature and exhibit the possibility in application like flexible display, electronic paper, and larges solar cells. Among the various AOSs, a-IGZO has lots of advantages because it has high channel mobility, uniform surface roughness and good transparency. [1] The high mobility is attributed to the overlap of spherical s-orbital of the heavy post-transition metal cations. This study demonstrated the effect of the variation in channel thickness from 30nm to 200nm on the TFT device performance. When the thickness was increased, turn-on voltage and subthreshold swing was decreased. The a-IGZO channels and source/drain metals were deposited with shadow mask. The a-IGZO channel layer was deposited on $SiO_2$/p-Si substrates by RF magnetron sputtering, where RF power is 150W. And working pressure is 3m Torr, at $O_2/Ar$ (2/28 sccm) atmosphere. The electrodes were formed with electron-beam evaporated Ti (30 nm) and Au (70 nm) bilayer. Finally, Al (150nm) as a gate metal was thermal-evaporated. TFT devices were heat-treated in a furnace at 250 $^{\circ}C$ and nitrogen atmosphere for 1hour. The electrical properties of the TFTs were measured using a probe-station. The TFT with channel thickness of 150nm exhibits a good subthreshold swing (SS) of 0.72 V/decade and on-off ratio of $1{\times}10^8$. The field effect mobility and threshold voltage were evaluated as 7.2 and 8 V, respectively.

  • PDF

Effects of thickness of GIZO active layer on device performance in oxide thin-film-transistors

  • Woo, C.H.;Jang, G.J.;Kim, Y.H.;Kong, B.H.;Cho, H.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.137-137
    • /
    • 2009
  • Thin-film transistors (TFTs) that can be prepared at low temperatures have attracted much attention due to the great potential for flexible electronics. One of the mainstreams in this field is the use of organic semiconductors such as pentacene. But device performance of the organic TFTs is still limited by low field effect mobility or rapidly degraded after exposing to air in many cases. Another approach is amorphous oxide semiconductors. Amorphous oxide semiconductors (AOSs) have exactly attracted considerable attention because AOSs were fabricated at room temperature and used lots of application such as flexible display, electronic paper, large solar cells. Among the various AOSs, a-IGZO was considerable material because it has high mobility and uniform surface and good transparent. The high mobility is attributed to the result of the overlap of spherical s-orbital of the heavy pest-transition metal cations. This study is demonstrated the effect of thickness channel layer from 30nm to 200nm. when the thickness was increased, turn on voltage and subthreshold swing were decreased. a-IGZO TFTs have used a shadow mask to deposit channel and source/drain(S/D). a-IGZO were deposited on SiO2 wafer by rf magnetron sputtering. using power is 150W, working pressure is 3m Torr, and an O2/Ar(2/28 SCCM) atmosphere at room temperature. The electrodes were formed with Electron-beam evaporated Ti(30nm) and Au(70nm) structure. Finally, Al(150nm) as a gate metal was evaporated. TFT devices were heat treated in a furnace at $250^{\circ}C$ in nitrogen atmosphere for an hour. The electrical properties of the TFTs were measured using a probe-station to measure I-V characteristic. TFT whose thickness was 150nm exhibits a good subthreshold swing(S) of 0.72 V/decade and high on-off ratio of 1E+08. Field effect mobility, saturation effect mobility, and threshold voltage were evaluated 7.2, 5.8, 8V respectively.

  • PDF

Theoretical Study on Observed Heat of Ligation for Iron(Ⅱ) and Nickel(Ⅱ) Octahedral Complexes (팔면체형 Fe(Ⅱ)와 Ni(Ⅱ)착물의 실측 리간드화열에 관한 이론적 연구)

  • Kim, Jung Sung;Choi, Jin Tae;Song, Young Dae;Cho, Tae Sub
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.2
    • /
    • pp.141-149
    • /
    • 1999
  • The correlation was investigated between the observed heat of ligation and calculated quantum chemical quantities for octahedral $[M(H_2O)_{6-x}(NH_3)_x]^{2+} (M=Fe(II),\;Ni(II))$ complexes by EHMO(Extended Huckel Molecular Orbital) and ZINDO/1(Zerner's Intermediate Neglected of Differential Overlap)method. The net charge of $Fe^{2+}$ and $Ni^{2+}$ ion of octahedral $[M(H_2O)_{6-x}(NH_3)_x]^{2+}(M=Fe(II),\;Ni(II))$ complexes(x=O, 1, …, 6) decreased with substituting $NH_3$ for $H_2O$ molecules. It has found that a good correlation exists between the observed heat of ligation and the calculated quantum chemical quantities such as net charge of central atom, enthalpy of formation, and total dissociation energy. From this finding, we have obtained the following semiempirical linear equation ${\Delta}H_{obs}=-0.2858_{qFe}+0.8813(r=0.97),\;{\Delta}H_{obs}=-0.8981_{qNi}+1.7929(r=0.95),\;{\Delta}H_{obs}=-0.0031H_{f(Fe)}+0.5725(r=0.97),\;{\Delta}H_{obs}=-0.0095H_{f(Ni)}+0.9193(r=0.97),\;{\Delta}H_{obs}=0.0476E_{diss(Fe)}+0.6434(r=0.94),\;{\Delta}H_{obs}=0.1401E_{diss(Ni)}+1.1393(r=0.93)$.

  • PDF