• Title/Summary/Keyword: Orbital area

Search Result 129, Processing Time 0.023 seconds

EFFECTS OF THE SITE AND THE EXTENT OF BLOWOUT FRACTURE ON ENOPHTHALMOS AND DIPLOPIA (Blowout 골절의 부위와 정도가 안구함몰 및 복시에 미치는 영향)

  • Hwang, Ung;Ryu, Sun-Youl
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.4
    • /
    • pp.292-300
    • /
    • 2004
  • Orbital blowout fractures are common consequence to blunt periorbital trauma. Pure orbital blowout fractures first occur at the weakest point of the orbital wall. Computed tomography(CT) is recognized to be the best imaging technique to evaluate orbital fractures. The extent and location of a blowout fractures in the CT scan were noted to have an effect on the clinical outcome. In the early posttraumatic period, the presence of significant enophthalmos is difficult to detect because of orbital edema. Early surgical intervention may improve the ultimate outcome because open reconstruction becomes more difficult if surgery is delayed. In this study, we evaluated isolated blowout fractures of the orbital floor by region-of-interest measurements from CT scans and their relationship to ophthalmologic findings. Six patients of the medial orbital wall fractures, eleven patients of the inferior orbital wall fractures, nineteen of the medial and the inferior orbital wall fractures confirmed by CT scan, were evaluated. The area of fracture and the volume of the displaced orbital tissue were determined from CT scan using linear measurements. Each of the calculated values for the area and the volume were compared with the degree of the enophthalmos, the diplopia, and the eyeball movement limitation to determine whether there was any significant relationship between them. The fracture area and the volume of the herniated orbital tissue were significantly positively correlated with the enophthalmos and the ocular motility limitation and not correlated with the diplopia. For the enophthalmos of 2mm or greater, the mean fracture area was 3.55{\pm}1.25cm^2$ and the volume of the herniated orbital tissue was $1.74{\pm}0.97cm^3$; for less than 2mm enophthalmos, $1.43{\pm}0.99cm^3$ and $0.52{\pm}0.49cm^3$, respectively. The enophthalmos of 2mm can be expected with $2.92cm^2$ of the fracture area and $1.40cm^3$ of the herniated orbital tissue. In conclusion, the enophthalmos of 2mm or more, which is a frequent indication for surgery. It can be expected when area of fracture is $2.92cm^2$ or more, or the volume of herniated orbital tissue is $1.40cm^3$ or more. And the CT scan using linear measurements has an application in the assessment of patients with blowout fractures and provides useful information in the posttraumatic evaluation of orbital fractures.

Orbital Volume Change Resulted from Packing in Ethmoidal Sinus for Correction of Isolated Medial Orbital Fractures (안와내벽파열골절의 내시경적 사골동내 충전에 따른 안와용적 변화)

  • Kim, Kyoung-Hoon;Choi, Soo-Jong;Kang, Cheol-Uk;Bae, Yong-Chan;Nam, Su-Bong
    • Archives of Craniofacial Surgery
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2009
  • Purpose: Endoscopic transnasal correction of the medial orbital fractures cannot be enable to confirm the reduction degree of orbital volume without imaging modalities. We have intended through this study to make a quantative analysis of preoperative orbital volume increment and the reduction degree of that after ethmoidal sinus packing by using CT scan. Methods: In this retrospective study, 22 patients were selected to evaluate the postoperative volume reduction, who took 2 CT scans which are pre- and postoperative under the same protocol. The postoperative CT scan was carried out in about 5 days after the operation with the packing inserted into ethmoidal sinus. The length of bony defect on each section was measured by PACS program and the area of defect was calculated by summing lengths on each section multiplied by the thickness of the section. When the outline of orbit on the slice is drawn manually with a cursor, PACS program measures the area automatically. Orbital volume was calculated from the sum of the area multiplied by the section thickness. Results: The mean dimension of fractured walls was $2.86{\pm}0.99cm^2$. The mean orbital volume of the unaffected orbits was $22.89{\pm}2.15cm^3$ and that of the affected orbits was $25.62{\pm}2.82cm^3$. The mean orbital volume increment of the affected orbits was $2.73{\pm}1.13cm^3$. After surgery, the mean orbital volume of the unaffected orbits was $22.46{\pm}2.73cm^3$ and the mean orbital volume decrease on the surgical side was $2.98{\pm}1.07cm^3$. The estimated correction rate was 118.30%. Conclusion: The orbital volume increment in fractured orbit showed linear correlation with the dimension of fractured area. The orbital volume changes after ethmoidal sinus packing also showed linear correlation with orbital volume increment in fractured orbit. This study showed the regressive linear correlation between the increment of orbital volume and the correction rate. To evaluate the maintenance of reduction state, we think that the further study should be done for comparative analysis of orbital volume change after removal of packing.

The Correlation between the Degree of Enophthalmos and the Extent of Fracture in Medial Orbital Wall Fracture Left Untreated for Over Six Months: A Retrospective Analysis of 81 Cases at a Single Institution

  • Sung, Yun Sik;Chung, Chan Min;Hong, In Pyo
    • Archives of Plastic Surgery
    • /
    • v.40 no.4
    • /
    • pp.335-340
    • /
    • 2013
  • Background In patients with medial orbital wall fracture, predicting the correlation between the degree of enophthalmos and the extent of fracture is essential for deciding on surgical treatment. We conducted this retrospective study to identify the correlation between the two parameters. Methods We quantitatively analyzed the correlation between the area of the bone defect and the degree of enophthalmos on computed tomography scans in 81 patients with medial orbital wall fracture who had been left untreated for more than six months. Results There was a significant linear positive correlation between the area of the medial orbital wall fracture and the degree of enophthalmos with a formula of E=0.705A+0.061 (E, the degree of enophthalmos; A, the area of bone defect) (Pearson's correlation coefficient, 0.812) (P<0.05). In addition, that there were no cases in which the degree of enophthalmos was greater than 2 mm when the area of the medial orbital wall fracture was smaller than $1.90cm^2$. Conclusions Our results indicate not only that 2 mm of enophthalmos corresponds to a bone defect area of approximately $2.75cm^2$ in patients with medial orbital wall fracture but also that the degree of enophthalmos could be quantitatively predicted based on the area of the bone defect even more than six months after trauma.

Quantitative Analysis of the Orbital Volume Change in Isolated Zygoma Fracture (관골 단독 골절에서 안구 용적 변화의 정량적 분석)

  • Jung, Han-Ju;Kang, Seok-Joo;Kim, Jin-Woo;Kim, Young-Hwan;Sun, Hook
    • Archives of Plastic Surgery
    • /
    • v.38 no.6
    • /
    • pp.783-790
    • /
    • 2011
  • Purpose: The zygoma (Zygomaticomaxillary) complexes make up a large portion of the orbital floor and lateral orbital walls. Zygoma fracture frequently causes the posteromedial displacement of bone fragments, and the collapse or overlapping of internal orbital walls. This process consequently can lead to the orbital volume change. The reduction of zygoma in an anterolateral direction may influence on the potential bone defect area of the internal orbital walls. Thus we performed the quantitative analysis of orbital volume change in zygoma fracture before and after operation. Methods: We conducted a retrospective study of preoperative and postoperative three-dimensional computed tomography scans in 39 patients with zygoma fractures who had not carried out orbital wall reconstruction. Orbital volume measurement was obtained through Aquarius Ver. 4.3.6 program and we compared the orbital volume change of injured orbit with that of the normal contralateral orbit. Results: The average orbital volume of normal orbit was 19.68 $cm^3$. Before the operation, the average orbital volume of injured orbit was 18.42 $cm^3$. The difference of the orbital volume between the injured orbit and the normal orbit was 1.18 $cm^3$ (6.01%) on average. After operation, the average orbital volume of injured orbit was 20.81 $cm^3$. The difference of the orbital volume between the injured orbit and the normal orbit was 1.17 $cm^3$ (5.92%) on average. Conclusion: There are considerable volume changes in zygoma fracture which did not accompany internal orbital wall fracture before and after operation. Our study reflects the change of bony frame, also that of all parts of the orbital wall, in addition to the bony defect area of orbital floor, in an isolated zygoma fracture so that it evaluates orbital volume change more accurately. Thus, the measurement of orbital volume in isolated zygoma fractures helps predict the degree of enophthalmos and decide a surgical plan.

Sensory change and recovery of infraorbital area after zygomaticomaxillary and orbital floor fractures

  • Sang Woo, Han;Jeong Ho, Kim;Sug Won, Kim;Sung Hwa, Kim;Dae Ryong, Kang;Jiye, Kim
    • Archives of Craniofacial Surgery
    • /
    • v.23 no.6
    • /
    • pp.262-268
    • /
    • 2022
  • Background: To compare the sensory change and recovery of infraorbital area associated with zygomaticomaxillary and orbital floor fractures and their recoveries and investigate the factors that affect them. Methods: We retrospectively reviewed 652 patients diagnosed with zygomaticomaxillary (n= 430) or orbital floor (n= 222) fractures in a single center between January 2016 and January 2021. Patient data, including age, sex, medical history, injury mechanism, Knight and North classification (in zygomaticomaxillary fracture cases), injury indication for surgery (in orbital floor cases), combined injury, sensory change, and recovery period, were reviewed. The chi-square test was used for statistical analysis. Results: Orbital floor fractures occurred more frequently in younger patients than zygomaticomaxillary fractures (p< 0.001). High-energy injuries were more likely to be associated with zygomaticomaxillary fractures (p< 0.001), whereas low-energy injuries were more likely to be associated with orbital floor fractures (p< 0.001). The sensory changes associated with orbital floor and zygomaticomaxillary fractures were not significantly different (p= 0.773). Sensory recovery was more rapid and better after orbital floor than after zygomaticomaxillary fractures; however, the difference was not significantly different. Additionally, the low-energy group showed a higher incidence of sensory changes than the high-energy group, but the difference was not statistically significant (p= 0.512). Permanent sensory changes were more frequent in the high-energy group, the difference was statistically significant (p= 0.043). Conclusion: The study found no significant difference in the incidence of sensory changes associated with orbital floor and zygomaticomaxillary fractures. In case of orbital floor fractures and high-energy injuries, the risk of permanent sensory impairment should be considered.

Orbital Wall Reconstruction by Copying a Template (defect model) from the Facial CT in Blow-out Fracture (얼굴뼈 CT 계측 모형을 이용한 안와벽골절의 재건)

  • Kim, Jae Keun;You, Sun Hye;Hwang, Kun;Hwang, Jin Hee
    • Archives of Craniofacial Surgery
    • /
    • v.10 no.2
    • /
    • pp.71-75
    • /
    • 2009
  • Purpose: Recently, orbital wall fracture is common injuries in the face. Facial CT is essential for the accurate diagnosis and appropriate treatment to reconstruct of the orbital wall. The objective of this study was to report the method for accurate measurement of area and shape of the bony defect in the blow-out fractures using facial CT in prior to surgery. Methods: The authors experienced 46 cases of orbital wall fractures and examined for diplopia, sensory disturbance in the area of distribution of the infraorbital nerve, and enophthalmos in the preoperation and followed 1 months after surgery, from August 2007 to May 2008. Bony defect was predicted by measuring continuous defect size from 3 mm interval facial CT. Copying from the defect model (template), we reconstructed orbital wall with resorbable sheet (Inion $CPS^{(R)}$ Inion Oy, Tampere, Finland). Results: One months after surgery using this method, 26 (100%) of the 26 patients improved in the diplopia and sensory disturbance in the area of distribution of the infraorbital nerve. Also 8 (72.7%) of the 11 patients had enophthalmos took favorable turn. Conclusion: This accurate and time-saving method is practicable for determining the location, shape and size of the bony defect. Using this method, we can reconstruct orbital wall fracture fastly and precisely.

Prospective Morphometric Study for Orbital Floor and Medial Wall Thickness in Vivo (안와바닥과 내벽의 두께에 대한 전향적 생체 계측학적 연구)

  • Park, Chang Sik;Kim, Yong Kyu
    • Archives of Craniofacial Surgery
    • /
    • v.10 no.2
    • /
    • pp.67-70
    • /
    • 2009
  • Purpose: Anatomical basis around orbit can be helpful in periorbital surgery, and there are many articles about measurement between periorbital reference points. In 1967, Jones and Evans measured the orbital wall thickness of Asian cadavers and this article has been cited more than 50 times. But there is no research in orbital thickness in Vivo. Author's idea was based on difference between live human and human cadaver. Material & Method: We conducted this study from 63 consecutive blow out fracture patients between January, 2000 to june, 2005 by collecting the bone fragments and measured the thickness of that fragment using vernia calipers. Anatomically, orbital floor is separated two area by inferior orbital fissure and we measured each area. Three areas were zone I (medial wall), zone II (medial to inferior orbital fissure) and zone III (lateral to inferior orbital fissure). Result: When the overall results were considered, the thickness of Zone I (medial wall of orbit) was average $0.131{\pm}0.006mm$ in male and $0.129{\pm}0.007mm$ in female and Zone II (medial side of orbital floor) was $0.251{\pm}0.005mm$ in male and $0.245{\pm}0.006mm$ in female, Zone III (lateral side of orbital floor) was $0.237{\pm}0.006mm$ in male and $0.226{\pm}0.006mm$ in female. There were no statistical difference between orbital wall thickness of male and female. Also, orbital wall thickness of adults measured $0.130{\pm}0.005mm$, $0.250{\pm}0.005mm$, $0.232{\pm}0.006mm$ in Zone I, Zone II, Zone III and $0.128{\pm}0.006mm$, $0.233{\pm}0.005mm$, $0.215{\pm}0.007mm$ in Zone I, Zone II, Zone III from childs, and there were no statistical difference between adult and child. Conclusion: This article is the first study about Korean orbital wall thickness, and can be helpful to periocular surgery.

A Statistical Analysis of Superior Orbital Fissure Width in Korean Adults using Computed Tomography Scans

  • Park, Yongsik;Kim, Youngjoon
    • Archives of Craniofacial Surgery
    • /
    • v.18 no.2
    • /
    • pp.89-91
    • /
    • 2017
  • Background: The superior orbital fissure is a small area that connects the middle cranial fossa and the orbit. Many studies have measured the size of the superior orbital fissure. However, there is no standard value for the size of the superior orbital fissure. Therefore, we conducted this study to provide the average size of the superior orbital fissure in Korean adults. Methods: We measured the widths of the superior orbital fissures of 142 patients using computed tomography scans. Because the width of the superior orbital fissure varies at different locations, we measured the superior orbital fissure width at the level of the optic canal. Results: In the males, the width of the superior orbital fissure on both sides was $3.79{\pm}0.93mm$, and these values were $3.79{\pm}0.96mm$ for the left side and $3.783{\pm}0.92mm$ for the right side. In the females, the widths of the superior orbital fissures were $3.62{\pm}1.35mm$ on the left side, $3.69{\pm}1.18mm$ on the right side, and $3.65{\pm}1.26mm$ across both sides. Conclusion: There were no significant differences between the males and females or between the left and right sides. The present study suggests that we may accept the hypothesis that a congenitally narrow superior orbital fissure may be a risk factor for the superior orbital fissure syndrome. Surgeons should take precaution with patients who have narrow superior orbital fissures during the perioperative period.

Correlation between the 2-Dimensional Extent of Orbital Defects and the 3-Dimensional Volume of Herniated Orbital Content in Patients with Isolated Orbital Wall Fractures

  • Cha, Jong Hyun;Moon, Myeong Ho;Lee, Yong Hae;Koh, In Chang;Kim, Kyu Nam;Kim, Chang Gyun;Kim, Hoon
    • Archives of Plastic Surgery
    • /
    • v.44 no.1
    • /
    • pp.26-33
    • /
    • 2017
  • Background The purpose of this study was to assess the correlation between the 2-dimensional (2D) extent of orbital defects and the 3-dimensional (3D) volume of herniated orbital content in patients with an orbital wall fracture. Methods This retrospective study was based on the medical records and radiologic data of 60 patients from January 2014 to June 2016 for a unilateral isolated orbital wall fracture. They were classified into 2 groups depending on whether the fracture involved the inferior wall (group I, n=30) or the medial wall (group M, n=30). The 2D area of the orbital defect was calculated using the conventional formula. The 2D extent of the orbital defect and the 3D volume of herniated orbital content were measured with 3D image processing software. Statistical analysis was performed to evaluate the correlations between the 2D and 3D parameters. Results Varying degrees of positive correlation were found between the 2D extent of the orbital defects and the 3D herniated orbital volume in both groups (Pearson correlation coefficient, 0.568-0.788; $R^2=32.2%-62.1%$). Conclusions Both the calculated and measured 2D extent of the orbital defects showed a positive correlation with the 3D herniated orbital volume in orbital wall fractures. However, a relatively large volume of herniation (>$0.9cm^3$) occurred not infrequently despite the presence of a small orbital defect (<$1.9cm^2$). Therefore, estimating the 3D volume of the herniated content in addition to the 2D orbital defect would be helpful for determining whether surgery is indicated and ensuring adequate surgical outcomes.

Late Complication of a Silicone Implant Thirty Years after Orbital Fracture Reconstruction

  • Lee, Chi An;Kang, Seok Joo;Yun, Ji Young;Sun, Hook
    • Archives of Craniofacial Surgery
    • /
    • v.18 no.2
    • /
    • pp.137-140
    • /
    • 2017
  • Alloplastic materials used for orbital fracture reconstruction can induce complications, such as infection, migration, extrusion, intraorbital hemorrhage, and residual diplopia. Silicone is one of the alloplastic materials that has been widely used for decades. The author reports a rare case of spontaneous extrusion of a silicone implant that was used for orbital fracture reconstruction 30 years earlier. A 50-year-old man was admitted to the emergency room for an exposed substance in the lower eyelid area of the left eye, which began as a palpable hard nodule a week earlier. The exposed material was considered to be implant used for previous surgery. Under general anesthesia, the implant and parts of the fibrous capsule tissue were removed. Several factors hinder the diagnosis of implant extrusions that occur a long period after the surgery. So, surgeons must be aware that complications with implants can still arise several decades following orbital fracture reconstruction, even without specific causes.