• Title/Summary/Keyword: Orbital Forming

Search Result 19, Processing Time 0.029 seconds

Sinonasal Undifferentiated Carcinoma - A Case Report - (부비동과 비의 미분화 암종 - 1예 보고 -)

  • Shin, Mi-Kyung;Chae, Yang-Seok
    • The Korean Journal of Cytopathology
    • /
    • v.8 no.1
    • /
    • pp.98-102
    • /
    • 1997
  • Sinonasal undifferentiated carcinoma(SNUC) is a distinct, relatively rare neoplasm arising in the nasal cavity and paranasal sinuses composed of undifferentiated epithelial cells and clinically characterized by a fulminant course. We report a case of SNUC in a 56-year old man who have had bilateral neck masses since one month ago before coming to our hospital. The paranasal computed tomography showed soft mass density in the left maxillary sinus and the nasal cavity with bone destruction in the anterior medial and the inferior maxillary sinus wall. This mass was extruded into the left orbital wall. Biopsy of the nasal mass and fine needle aspiration(FNA) of the neck mass were done. FNA revealed medium-sized neoplastic cells forming clusters or individually dispersed. Nuclei were round to oval, slightly to moderately pleomorphic, and hyperchromatic. Chromatin was finely granular, but occasionally was coarsely granular. Nucleoli varied from large to inconspicuous and the cytoplasm was scanty.

  • PDF

Finding of a Characteristic Reactive Region Common to Some Series of Chemical Carcinogens

  • Park, Byung-Kak;Lee, Moon-Hawn;Do, Sung-Tag
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.103-107
    • /
    • 1985
  • Quantum chemical calculations were carried out to explain how the electronic states of some series compounds vary with metabolic activation. Compounds studied included aromatic amines and amides, polycyclic hydrocarbons, and a few alkylating agents that do not require metabolic activation. The 1, 2 and 4 positions forming the trans-butadiene frame of a molecule, henceforth referred to as "the trans 1, 2, 4 region", have seen to be important positions for the prediction of carcinogenic activity of these compounds. It is also evident that their electrophilic properties increase with metabolic activation. That is the sum of ${\pi}$-electron densities of the trans 1, 2, 4 region in the lowest unoccupied molecular orbital (LUMO) has been found to increase in the order of precarcinogens < proximate-ones < the carbocation ultimate-ones. This is consistent with the fact that chemical carcinogens become more strongly electrophilic with activating. This region not only provides a unified view of structurally diverse carcinogens, but also predicts uniformity in their reactive sites. Accordingly, we suggest that an understanding of the trans 1, 2, 4 region would be helpful in elucidating the mechanism of carcinogenesis.

Theoretical Investigation of 2,3-bis(2,4,5-trimethyl-3-thienyl)maleic anhydride: A Thermally Irreversible Photochromic System

  • 조한국;정병서
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.3
    • /
    • pp.308-313
    • /
    • 1998
  • A thermally irreversible photochromic system, 2,3-bis(2,4,5-trimethyl-3-thienyl)maleic anhydride (MTMA), has been studied by semi-empirical molecular orbital methods. There are one pair of stable conformations for the closed-ring form and three pairs for the open-ring form, each pair consisting of two mirror-image conformations. Interconversion between the parallel and anti-parallel conformations of the open-ring form is restricted due to high energy barriers. Only the anti-parallel conformation appears to be responsible for photochromic cyclization. Thermostability of the compound is attributed to an avoided crossing at high energy in the ground states of the isomers, whereas the photoreactivity can be explained by the mutually connected excited singlet (S1) states of the isomers, forming a double well potential with a low energy barrier. The large solvent effects can be partly explained with the low dipole moment of the anti-parallel conformation of MTMA in the S1 state. The large variation of quantum efficiency suggests that excess vibronic energy can be utilized to provide the activation energy for the photochromic reaction.

Delayed Foreign Body Reaction around the Absorbable Implants in Facial Bone Fracture: A Case Report (안면부 골절에 사용된 흡수성 보형물의 지연성 이물반응: 증례보고)

  • Suh, Yong-Hoon;Kim, Young-Joon
    • Archives of Plastic Surgery
    • /
    • v.38 no.6
    • /
    • pp.875-878
    • /
    • 2011
  • Purpose: Absorbable implants are frequently used to fix facial bone fractures, because they are radiolucent and compatible with magnetic resonance imaging (MRI). Despite their increasing usage, however, there have been few reports about their long-term side-effects. In this paper, a case in which absorbable implants led to a foreign body reaction 17 months after their insertion is presented. Methods: A previously healthy 19-year-old male fell from a flight of stairs and visited the authors' hospital with right periorbital pain. Zygomaticomaxillary fracture involving right orbital floor was detected via a facial bone computed tomography (CT). Internal fixation with absorbable implants was followed by open reduction. 17 months after the surgery, the patient complained of localized periorbital swelling. Removal of the granulomatous lesion including the absorbable implants along with their biopsy and culture was performed. Results: The granulomatous lesion around the implants was firm and extended into the maxillary sinus. The histologic finding showed a microabscess with a foreign body reaction. Methicillin-sensitive Staphylococcus aureus growth was confirmed in the culture. No definite abnormal symptoms ensued after the complete removal. Conclusion: A microabscess-forming granulomatous lesion around the absorbable implant can cause delayed symptomatic foreign body reaction despite its rare occurrence. Complete removal of the lesion including implants is expected to have a successful outcome if it is encountered.

Nature of the Wiggle Instability of Galactic Spiral Shocks

  • Kim, Woong-Tae;Kim, Yonghwi;Kim, Jeong-Gyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.37.2-37.2
    • /
    • 2014
  • Gas in disk galaxies interacts nonlinearly with a underlying stellar spiral potential to form galactic spiral shocks. Numerical simulations typically show that these shocks are unstable to the wiggle instability, forming non-axisymmetric structures with high vorticity. While previous studies suggested that the wiggle instability may arise from the Kelvin-Helmholtz instability or orbit crowding of gas elements near the shock, its physical nature remains uncertain. It was even argued that the wiggle instability is of numerical origin, caused by the inability of a numerical code to resolve a shock that is inclined to numerical grids. In this work, we perform a normal-mode linear stability analysis of galactic spiral shocks as a boundary-value problem. We find that the wiggle instability originates physically from the potential vorticity generation at a distorted shock front. As the gas follows galaxy rotation, it periodically passes through multiple shocks, successively increasing its potential vorticity. This sets up a normal-mode that grows exponentially, with a growth rate comparable to the orbital angular frequency. We show that the results of our linear stability analysis are in good agreement with the those of local hydrodynamic simulations of the wiggle instability.

  • PDF

Sequential Formation of Multiple Gap States by Interfacial Reaction between Alq3 and Alkaline-earth Metal

  • Kim, Tae Gun;Kim, Jeong Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.129.2-129.2
    • /
    • 2013
  • Electron injection enhancement at OLED (organic light-emitting diodes) cathode side has mostly been achieved by insertion of a low work function layer between metal electrode and emissive layer. We investigated the interfacial chemical reactions and electronic structures of alkaline-earth metal (Ca, Ba)/Alq3 [tris(8-hydroxyquinolinato)aluminium] and Ca/BaF2/Alq3 using in-situ X-ray & ultraviolet photoelectron spectroscopy. The alkaline-earth metal deposited on Alq3 generates two energetically separated gap states in sequential manner. This phenomenon is explained by step-by-step charge transfer from alkali-earth metal to the lowest unoccupied molecular orbital (LUMO) states of Alq3, forming new occupied states below Fermi level. The BaF2 interlayer initially prevents from direct contact between Alq3 and reactive Ca metal, but it is dissociated into Ba and CaF2. However, as the Ca thickness increases, the Ca penetrates the interlayer to directly participate in the reaction with underlying Alq3. The influence of the multiple gap state formation by the interfacial chemical reaction on the OLED performance will be discussed.

  • PDF

Adsorption and Dissociation Reaction of Carbon Dioxide on Pt(111) and Fe(111) Surface: MO-study

  • Jo, Sang Jun;Park, Dong Ho;Heo, Do Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.8
    • /
    • pp.779-784
    • /
    • 2000
  • Comparing the adsorption properties and dissociation on a Pt(111) iththat ona Fe(111) surface, we have con-sidered seven coordination modes of the adsorbed binding site: $di-${\sigma}$${\Delta}$\mu\pi/\mu$, 1-fbld,2-fold, and 3-fbld sites. On the Pt(111) surface, t he adsorbed binding site of carbon dioxide was strongestat the1-fold site and weakest at the $\pi/\mu-site.$ The adsorbed binding site on the Fe(111) surface was strongest at the di-бsite and weakest at the 3-fold site. We have found that the binding energy at each site that excepted 3-fold on the Fe(111) surface was stronger than the binding energy on the Pt(111) surface and that chemisorbed $CO_2bends$ because of metal mixing with $2\piu${\rightarrow}$6a_1CO_2orbital.$, The dissociation reaction occured in two steps, with an intermediate com-plex composed of atomic oxygen and ${\pi}bonding$ CO forming. The OCO angles of reaction intermediate com-plex structure for the dissociation reaction $were115^{\circ}Con$ the Pt(111), and $117^{\circ}C$ on the Fe(111) surface. We have found that the $CO_2dissociation$ rea11) surface proceeds easily,with an activationenergy about 0.2 eV lower than that on the Pt(111) surface.

Experimental Study on Effect of Stranded Oil on the Penetration of Particulate Matters in Tidal Flat (연안 조간대에 표착된 기름이 입자상 물질의 토양침투에 미치는 영향의 실험적 연구)

  • Cheong, Cheong-Jo;Lee, Young-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1030-1034
    • /
    • 2005
  • The purpose of this study was to clarify the penetration behavior of particulate matters by wave and tidal actions in sandy beach located in enclosed bay and to evaluate the effect of stranded oil on penetration of particulate matters. Experiments were rallied out using a model sandy beach facility. The particulate matters penetrated into saturated sediments by wave action from breaking wave run-up point with a semi-circular forming in low energy beach as enclosed bay. On the other hand, the penetration velocity of the particulate matters was to be faster according to the increase of slope and breaking wave height. The particulate matters by tidal action penetrated into the sediments at an angie of 45 degrees in the direction of porous water flow. The stranded oil completely blocked the penetration of the particulate matters into the sediments. These results indicate that the penetrated oil prevents the penetration of the particulate matters into the sediments and, therefore, results in the reduction in the supply of plankton, bacteria and organic detritus for the benthic organisms in the sandy beach.

Electron Microscopic Study on the Rabbit Inferior Lacrimal Glands (토끼 아래눈물샘의 미세구조에 관한 전자현미경적 연구)

  • Park, Young-Hee;Ahn, E-Tay;Ko, Jeong-Sik;Park, Dae-Kyoon;Kim, Myeong-Soo;Park, Kyung-Ho
    • Applied Microscopy
    • /
    • v.37 no.1
    • /
    • pp.23-33
    • /
    • 2007
  • The lacrimal gland are compound tubule-acinar glands. The main lacrimal function is the production of the aqueous layer, the thickest and major constituent of the precorneal tear film. The lacrimal gland also has an important function in the defense system of the ocular surface, forming a part of the conjunctival-associated hymphoid tissue. The ultrastructural characteristics of the lacrimal gland of the rabbit were described. The lacrimal tissues of rabbits were processed through the conventional techniques for transmission electron microscopy. The secretory portions consisted of three cell types: 1. Serous cells with electron dense secretory granules. 2. Seromucous cells containing variable moderately electron dense secretory granules with flocculent material. 3. Mucous rolls containing mucous secretory granules. The serous cells were situated at the basal portion of acini, and they contained electron dense granules of variable densities and sizes. The seromucous cells contained a few protein secretory granules and more mucous secretory granules. The mucous cells contained even fewer protein secretory granules and exclusively mucous secretory granules. The epithelium of the intralobular ducts showed secretory granules, junctional complexes, and large basolateral intercellular spaces with lateral folds. These study might be helpful in determining inter-relationships, similarities and differences among the orbital glands of various physiological or pathological conditions.