• 제목/요약/키워드: Orbit Transfer and Correction

검색결과 15건 처리시간 0.021초

소형위성의 궤도 천이 및 보정을 위한 홀 방식 전기추력기의 수치모사 (Numerical simulation of a hall thruster for orbit transfer and correction of small satellites)

  • 선종호;이종섭;임유봉;최원호;이해준
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.66-69
    • /
    • 2006
  • 소형 위성용 궤도천이 및 보정을 위한 홀 방식 전기추력기의 초기 설계를 위한 2-D Particle-In-Cell (PIC) 수치모사 (Simulation) 결과를 분석하였다. 수치해석에 의한 결과를 분석해 본 결과 주입된 중성 Xe Gas는 전자와의 충돌을 통해 이온화 된 후 가속지역을 통과하게 되며, 이들 두 지역은 추력기 채널에서 잘 분리되어 존재하는 걸로 나타났다. 또한 본 해석을 통하여 본 논문에서 고려된 추력기가 원래의 임무인 소형위성의 궤도 천이 및 보정을 수행할 수 있는 충분한 추력과 비추력을 갖출 수 있는 것으로 판단된다.

  • PDF

인공위성의 위치획득 오차보정을 위한 몬테카를로 분석 (MONTE CARLO ANALYSIS FOR STATION ACQUISITION ERROR CORRECTION OF SATELLITE)

  • 김지영;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • 제12권2호
    • /
    • pp.265-274
    • /
    • 1995
  • The purpose of perigee kick motor firing is to place a satellite into transfer orbit and that of apogee kick motor firing is to place the satellite into geosynchonous orbit in order to increase the semi-major axis of the transfer orbit and reduce the inclination of the transfer orbit. Because apogee motor firing is always accompanied with injection errors, the satellite is not placed into geosynchonous orbit but into a near-geosynchonous orbit, also knows as a drift orbit. Thus, the orbital maneuver to correct drift orbit into gteosynchonous orbit is required, this maneuver is called the station acquisition. For reduction of expenditure and performance of mission, we estimate $\Delta$V budget and required fuel allowance for station acquisition. As the uncertainty of drift orbit by injection error of perigee and apogee kick motor firing prevents us from obtaining exact $\Delta$V budget, statistical Monte Carlo simulation technique is used in order to get optimal $\Delta$V budget and required fuel allowance with a probability of 99%. With respect to Korea satellite launched by Delta-2 launch vehicle in 1995, Monte Carlo analysis is used in order to get various orbital parameters, $\Delta$V budget and required fuel allowance for station acquisition with a probability of 99%.

  • PDF

소형위성의 궤도천이 및 보정을 위한 홀 추력기의 설계 (Development of Hall-effect Thruster for Orbit Correction and Transfer of Small Satellites)

  • 선종호;강성민;김연호;전은용;최원호;이종섭;서미희
    • 한국항공우주학회지
    • /
    • 제37권5호
    • /
    • pp.490-495
    • /
    • 2009
  • 소형 인공위성의 궤도천이 및 보정을 위하여 추력이 약 10 mN이고 비추력이 1500 s인 홀 방식 전기추력기를 설계하였다. 개발된 추력기는 홀 방식의 추력부, 전력공급부 및 연료 공급부로 구성되어 있고, 무게, 소모전력 및 효율은 각각 10 kg, 300 W 및 30%정도이다. 개발된 추력기 시스템에 대한 간략한 소개를 홀 방식의 추력기를 선택하게 된 배경해석과 함께 기술하였다.

Evaluation of GSICS Correction for COMS/MI Visible Channel Using S-NPP/VIIRS

  • Jin, Donghyun;Lee, Soobong;Lee, Seonyoung;Jung, Daeseong;Sim, Suyoung;Huh, Morang;Han, Kyung-soo
    • 대한원격탐사학회지
    • /
    • 제37권1호
    • /
    • pp.169-176
    • /
    • 2021
  • The Global Space-based Inter-Calibration System (GSICS) is an international partnership sponsored by World Meteorological Organization (WMO) to continue and improve climate monitoring and to ensure consistent accuracy between observation data from meteorological satellites operating around the world. The objective for GSICS is to inter-calibration from pairs of satellites observations, which includes direct comparison of collocated Geostationary Earth Orbit (GEO)-Low Earth Orbit (LEO) observations. One of the GSICS inter-calibration methods, the Ray-matching technique, is a surrogate approach that uses matched, co-angled and co-located pixels to transfer the calibration from a well calibrated satellite sensor to another sensor. In Korea, the first GEO satellite, Communication Ocean and Meteorological Satellite (COMS), is used to participate in the GSICS program. The National Meteorological Satellite Center (NMSC), which operated COMS/MI, calculated the Radiative Transfer Model (RTM)-based GSICS coefficient coefficients. The L1P reproduced through GSICS correction coefficient showed lower RMSE and Bias than L1B without GSICS correction coefficient applied. The calculation cycles of the GSICS correction coefficients for COMS/MI visible channel are provided annual and diurnal (2, 5, 10, 14-day), but long-term evaluation according to these cycles was not performed. The purpose of this paper is to perform evaluation depending on the annual/diurnal cycles of COMS/MI GSICS correction coefficients based on the ray-matching technique using Suomi-NPP/Visible Infrared Imaging Radiometer Suite (VIIRS) data as reference data. As a result of evaluation, the diurnal cycle had a higher coincidence rate with the reference data than the annual cycle, and the 14-day diurnal cycle was the most suitable for use as the GSICS correction coefficient.

위성 추진시스템의 추력제어밸브 작동에 따른 추진제 비정상 유동 특성 (Transient Flow Behavior of Propellant with Actuation of Thrust Control Valve in Satellite Propulsion System)

  • 김정수;한조영;최진철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.294-298
    • /
    • 2001
  • Satellite propulsion system is employed for orbit transfer, orbit correction, and attitude control. The monopropellant feeding system in the low-earth-orbit satellite blowdowns fuel to the thrust chamber. The thrust produced by the thruster depends on fuel amount flowed into the combustion chamber. If the thruster valve be given on-off signal from on-board commander in the satellite, valve will be opened or closed. When the thrusters fire fuel flows through opened thruster valve. Instantaneous stoppage of flow in according to valve actuation produces transient pressure due to pressure wave. This paper describes transient pressure predictions of the KOMPSAT2 propulsion system resulting from latching valve and thrust control valve operations. The time-dependent set of the fluid mass and momentum equations are calculated by Method of Characteristics (MOC).

  • PDF

Uncertainty Requirement Analysis for the Orbit, Attitude, and Burn Performance of the 1st Lunar Orbit Insertion Maneuver

  • Song, Young-Joo;Bae, Jonghee;Kim, Young-Rok;Kim, Bang-Yeop
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권4호
    • /
    • pp.323-333
    • /
    • 2016
  • In this study, the uncertainty requirements for orbit, attitude, and burn performance were estimated and analyzed for the execution of the $1^{st}$ lunar orbit insertion (LOI) maneuver of the Korea Pathfinder Lunar Orbiter (KPLO) mission. During the early design phase of the system, associate analysis is an essential design factor as the $1^{st}$ LOI maneuver is the largest burn that utilizes the onboard propulsion system; the success of the lunar capture is directly affected by the performance achieved. For the analysis, the spacecraft is assumed to have already approached the periselene with a hyperbolic arrival trajectory around the moon. In addition, diverse arrival conditions and mission constraints were considered, such as varying periselene approach velocity, altitude, and orbital period of the capture orbit after execution of the $1^{st}$ LOI maneuver. The current analysis assumed an impulsive LOI maneuver, and two-body equations of motion were adapted to simplify the problem for a preliminary analysis. Monte Carlo simulations were performed for the statistical analysis to analyze diverse uncertainties that might arise at the moment when the maneuver is executed. As a result, three major requirements were analyzed and estimated for the early design phase. First, the minimum requirements were estimated for the burn performance to be captured around the moon. Second, the requirements for orbit, attitude, and maneuver burn performances were simultaneously estimated and analyzed to maintain the $1^{st}$ elliptical orbit achieved around the moon within the specified orbital period. Finally, the dispersion requirements on the B-plane aiming at target points to meet the target insertion goal were analyzed and can be utilized as reference target guidelines for a mid-course correction (MCC) maneuver during the transfer. More detailed system requirements for the KPLO mission, particularly for the spacecraft bus itself and for the flight dynamics subsystem at the ground control center, are expected to be prepared and established based on the current results, including a contingency trajectory design plan.

위성 회전축 및 센서 바이어스 결정을 위한 확장 Shuster 알고리즘에 관한 연구 (Extension of shuster's algorithm for spin-axis attitude and sensor bias determination)

  • 노태수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.238-242
    • /
    • 1994
  • Shuster's algorithm for spin-axis determination is extended to include sensor bias and mounting angle as its solve-for parameters. The relation between direct and derived measurements bias is obtained by linearizing their kinematic equations. A one-step least-square estimation technique referred to as the 'closed form' solution is used, and the solution provides a more refined and decent initial guess for the subsequent filtering process contained within the differential correction module. The modified algorithm is applied for attitude determination of a GEO communication satellite in transfer orbit, and its results are presented.

  • PDF

Korea Pathfinder Lunar Orbiter (KPLO) Operation: From Design to Initial Results

  • Moon-Jin Jeon;Young-Ho Cho;Eunhyeuk Kim;Dong-Gyu Kim;Young-Joo Song;SeungBum Hong;Jonghee Bae;Jun Bang;Jo Ryeong Yim;Dae-Kwan Kim
    • Journal of Astronomy and Space Sciences
    • /
    • 제41권1호
    • /
    • pp.43-60
    • /
    • 2024
  • Korea Pathfinder Lunar Orbiter (KPLO) is South Korea's first space exploration mission, developed by the Korea Aerospace Research Institute. It aims to develop technologies for lunar exploration, explore lunar science, and test new technologies. KPLO was launched on August 5, 2022, by a Falcon-9 launch vehicle from cape canaveral space force station (CCSFS) in the United States and placed on a ballistic lunar transfer (BLT) trajectory. A total of four trajectory correction maneuvers were performed during the approximately 4.5-month trans-lunar cruise phase to reach the Moon. Starting with the first lunar orbit insertion (LOI) maneuver on December 16, the spacecraft performed a total of three maneuvers before arriving at the lunar mission orbit, at an altitude of 100 kilometers, on December 27, 2022. After entering lunar orbit, the commissioning phase validated the operation of the mission mode, in which the payload is oriented toward the center of the Moon. After completing about one month of commissioning, normal mission operations began, and each payload successfully performed its planned mission. All of the spacecraft operations that KPLO performs from launch to normal operations were designed through the system operations design process. This includes operations that are automatically initiated post-separation from the launch vehicle, as well as those in lunar transfer orbit and lunar mission orbit. Key operational procedures such as the spacecraft's initial checkout, trajectory correction maneuvers, LOI, and commissioning were developed during the early operation preparation phase. These procedures were executed effectively during both the early and normal operation phases. The successful execution of these operations confirms the robust verification of the system operation.

소형 액체상단을 이용한 달 탐사선 임무 예비설계 (Preliminary Mission Design for a Lunar Explorer using Small Liquid Upper Stage)

  • 최수진;이훈희;이상일;임석희;이기주
    • 한국추진공학회지
    • /
    • 제24권1호
    • /
    • pp.17-23
    • /
    • 2020
  • 달 탐사에서 발사체 상단은 주로 저궤도에 투입된 탐사선을 38만 km의 거리에 있는 달까지 투입해주는 역할을 한다. 국외의 경우 상단(Upper Stage)은 달 탐사선을 지구-달 전이궤적에 투입 후 탐사선과 분리되고, 달 탐사선은 그 이후 자체 추진제를 이용하여 중간 경로 수정 기동 및 달 궤도 진입을 수행한다. 본 연구는 새롭게 제시되는 소형 액체상단을 기술하였다. 습질량이 총 2.9톤인 액체상단을 이용할 경우 달 탐사선을 지구-달 전이궤적 투입뿐만 아니라 달 궤도 진입까지 수행할 수 있다. 본 연구는 나로 우주센터에서 발사할 경우를 기준으로 허용 가능한 달 탐사선의 질량 범위를 도출하고, 탐사선의 허용 가능한 임무 범위도 다양하게 기술하고자 한다.