• Title/Summary/Keyword: Orbit Model

Search Result 416, Processing Time 0.023 seconds

Automatically Diagnosing Skull Fractures Using an Object Detection Method and Deep Learning Algorithm in Plain Radiography Images

  • Tae Seok, Jeong;Gi Taek, Yee; Kwang Gi, Kim;Young Jae, Kim;Sang Gu, Lee;Woo Kyung, Kim
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.1
    • /
    • pp.53-62
    • /
    • 2023
  • Objective : Deep learning is a machine learning approach based on artificial neural network training, and object detection algorithm using deep learning is used as the most powerful tool in image analysis. We analyzed and evaluated the diagnostic performance of a deep learning algorithm to identify skull fractures in plain radiographic images and investigated its clinical applicability. Methods : A total of 2026 plain radiographic images of the skull (fracture, 991; normal, 1035) were obtained from 741 patients. The RetinaNet architecture was used as a deep learning model. Precision, recall, and average precision were measured to evaluate the deep learning algorithm's diagnostic performance. Results : In ResNet-152, the average precision for intersection over union (IOU) 0.1, 0.3, and 0.5, were 0.7240, 0.6698, and 0.3687, respectively. When the intersection over union (IOU) and confidence threshold were 0.1, the precision was 0.7292, and the recall was 0.7650. When the IOU threshold was 0.1, and the confidence threshold was 0.6, the true and false rates were 82.9% and 17.1%, respectively. There were significant differences in the true/false and false-positive/false-negative ratios between the anterior-posterior, towne, and both lateral views (p=0.032 and p=0.003). Objects detected in false positives had vascular grooves and suture lines. In false negatives, the detection performance of the diastatic fractures, fractures crossing the suture line, and fractures around the vascular grooves and orbit was poor. Conclusion : The object detection algorithm applied with deep learning is expected to be a valuable tool in diagnosing skull fractures.

Effect of perforation patterns on the fundamental natural frequency of microsatellite structure

  • Ahmad M. Baiomy;M. Kassab;B.M. El-Sehily;R.M. El-Kady
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.3
    • /
    • pp.223-243
    • /
    • 2023
  • There is a burgeoning demand for minimizing the mass of satellites because of its direct impact on reducing launch-to-orbit cost. This must be done without compromising the structure's efficiency. The present paper introduces a relatively low-cost and easily implementable approach for optimizing structural mass to a maximum natural frequency. The natural frequencies of the satellite are of utmost pertinence to the application requirements, as the sensitive electronic instrumentation and onboard computers should not be affected by the vibrations of the satellite structure. This methodology is applied to a realistic model of Al-Azhar University micro-satellite in partnership with the Egyptian Space Agency. The procedure used in structural design can be summarized in two steps. The first step is to select the most favorable primary structural configuration among several different candidate variants. The nominated variant is selected as the one scoring maximum relative dynamic stiffness. The second step is to use perforation patterns reduce the overall mass of structural elements in the selected variant without changing the weight. The results of the presented procedure demonstrate that the mass reduction percentage was found to be 39% when compared to the unperforated configuration that had the same plate thickness. The findings of this study challenge the commonly accepted notion that isogrid perforations are the most effective means of achieving the goal of reducing mass while maintaining stiffness. Rather, the study highlights the potential benefits of exploring a wider range of perforation unit cells during the design process. The study revealed that rectangular perforation patterns had the lowest efficiency in terms of modal stiffness, while triangular patterns resulted in the highest efficiency. These results suggest that there may be significant gains to be made by considering a broader range of perforation shapes and configurations in the design of lightweight structures.

Preflight Calibration Results of Wide-Angle Polarimetric Camera (PolCam) onboard Korean Lunar Orbiter, Danuri

  • Minsup Jeong;Young-Jun Choi;Kyung-In Kang;Bongkon Moon;Bonju Gu;Sungsoo S. Kim;Chae Kyung Sim;Dukhang Lee;Yuriy G. Shkuratov;Gorden Videen;Vadym Kaydash
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.293-299
    • /
    • 2023
  • The Wide-Angle Polarimetric Camera (PolCam) is installed on the Korea's lunar orbiter, Danuri, which launched on August 5, 2022. The mission objectives of PolCam are to construct photometric maps at a wavelength of 336 nm and polarization maps at 461 and 748 nm, with a phase angle range of 0°-135° and a spatial resolution of less than 100 m. PolCam is an imager using the push-broom method and has two cameras, Cam 1 and Cam 2, with a viewing angle of 45° to the right and left of the spacecraft's direction of orbit. We conducted performance tests in a laboratory setting before installing PolCam's flight model on the spacecraft. We analyzed the CCD's dark current, flat-field frame, spot size, and light flux. The dark current was obtained during thermal / vacuum test with various temperatures and the flat-field frame data was also obtained with an integrating sphere and tungsten light bulb. We describe the calibration method and results in this study.

Depth Dose According to Depth during Cone Beam Computed Tomography Acquisition and Dose Assessment in the Orbital Area Using a Three-Dimensional Printer

  • Min Ho Choi;Dong Yeon Lee;Yeong Rok Kang;Hyo Jin Kim
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.2
    • /
    • pp.68-77
    • /
    • 2024
  • Background: Cone beam computed tomography (CBCT) is essential for correcting and verifying patient position before radiation therapy. However, it poses additional radiation exposure during CBCT scans. Therefore, this study aimed to evaluate radiological safety for the human body through dose assessment for CBCT. Materials and Methods: For CBCT dose assessment, the depth dose was evaluated using a cheese phantom, and the dose in the orbital area was evaluated using a human body phantom self-fabricated with a three-dimensional printer. Results and Discussion: The evaluation of radiation doses revealed maximum doses of 14.14 mGy and minimum doses of 6.12 mGy for pelvic imaging conditions. For chest imaging conditions, the maximum doses were 4.82 mGy, and the minimum doses were 2.35 mGy. Head imaging conditions showed maximum doses of 1.46 mGy and minimum doses of 0.39 mGy. The eyeball doses using a human body phantom model averaged at 2.11 mGy on the left and 2.19 mGy on the right. The depth dose ranged between 0.39 mGy and 14.14 mGy, depending on the change in depth for each imaging mode, and the average dose in the orbit area using a human body phantom was 2.15 mGy. Conclusion: Based on the experimental results, CBCT did not significantly affect the radiation dose. However, it is important to maintain a minimal radiation dose to optimize radiation protection following the as low as reasonable achievable principle.

Growth and optical conductivity properties for BaIn2S4 single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)법에 의한 BaIn2S4 단결정 박막 성장과 광전도 특성)

  • Jeong, Kyunga;Hong, Kwangjoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.5
    • /
    • pp.173-181
    • /
    • 2015
  • A stoichiometric mixture of evaporating materials for $BaIn_2S_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $BaIn_2S_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by double crystal X-ray diffraction (DCXD). The carrier density and mobility of $BaIn_2S_4$ single crystal thin films measured from Hall effect by van der Pauw method are $6.13{\times}10^{17}cm^{-3}$ and $222cm^2/v{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $BaIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=3.0581eV-(3.9511{\times}10^{-3}eV/K)T^2/(T+536K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $BaIn_2S_4$ have been estimated to be 182.7 meV and 42.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $BaIn_2S_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-exciton for n = 1 and $C_{24}$-exciton peaks for n = 24.

Estimation of Global Horizontal Insolation over the Korean Peninsula Based on COMS MI Satellite Images (천리안 기상영상기 영상을 이용한 한반도 지역의 수평면 전일사량 추정)

  • Lee, Jeongho;Choi, Wonseok;Kim, Yongil;Yun, Changyeol;Jo, Dokki;Kang, Yongheack
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.151-160
    • /
    • 2013
  • Recently, although many efforts have been made to estimate insolation over Korean Peninsula based on satellite imagery, most of them have utilized overseas satellite imagery. This paper aims to estimate insolation over the Korean Peninsula based on the Korean stationary orbit satellite imagery. It utilizes level 1 data and level 2 cloud image of COMS MI, the first meteorological satellite of Korea, and OMI image of NASA as input data. And Kawamura physical model which has been known to be suitable for East Asian area is applied. Daily global horizontal insolation was estimated by using satellite images of every fifteen minutes for the period from May 2011 to April 2012, and the estimates were compared to the ground based measurements. The estimated and observed daily insolations are highly correlated as the $R^2$ value is 0.86. The error rates of monthly average insolation was under ${\pm}15%$ in most stations, and the annual average error rate of horizontal global insolation ranged from -5% to 5% except for Seoul. The experimental results show that the COMS MI based approach has good potential for estimating insolation over the Korean Peninsula.

LONGITUDINAL AND SEASONAL VARIATIONS OF THE ELECTRON TEMPERATURE AND DENSITY IN THE LOW_LATITUDE TOPSIDE IONOSPHERE OBSERVED BY KOMPSAT-1 (다목적 실용위성 1호로 측정한 저위도 상부 이온층의 전자 온도와 전자 밀도의 경도 및 계절별 변화)

  • Kim, Hee-jun;Park, Sun-Mie;Lee, Jae-Jin;Lee, En-sang;Min, Kyoung-Wook;Han, Won-yong;Nam, Uk-Won;Jin, Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.2
    • /
    • pp.123-132
    • /
    • 2002
  • The electron density and temperature in the topside ionosphere are observed by the ionosphere Measurement Sensor (IMS) onboard the KOMPSAT-1, which has the sun-synchronous orbit of the altitude of 685 km and the orbital inclination of $98^{\circ}$ with a descending node at 22:50LT. Observations have been analyzed to determine the seasonal variations of the electron density and temperature in the low-latitude region. Only the night-time (22:50LT) behavior on magnetically quiet days (Kp < 4) has been examined. Observations show a strong longitudinal and seasonal variation. Generally, in the dip equator the density increases and the temperature decreases. In equinox the latitudinal distributions of the electron density and temperature are quite symmetric about the dip equator. However, the local maximum of the density and the local minimum of the temperature shift toward the Northern hemisphere in summer solstice but the Southern hemisphere in winter solstice. Such variations are due to the influences of field-aligned plasma transport induced by F region neutral wind. Compared with the IRI95 model, the observed electron density and temperature show significant differences from those predicted by the IRI95 model.

Accuracy Enhancement using Network Based GPS Carrier Phase Differential Positioning (네트워크 기반의 GPS 반송파 상대측위 정확도 향상)

  • Lee, Yong-Wook;Bae, Kyoung-Ho
    • Spatial Information Research
    • /
    • v.15 no.2
    • /
    • pp.111-121
    • /
    • 2007
  • The GPS positioning offer 3D position using code and carrier phase measurements, but the user can obtain the precise accuracy positioning using carrier phase in Real Time Kinematic(RTK). The main problem, which RTK have to overcome, is the necessary to have a reference station(RS) when using RTK should be generally no more than 10km on average, which is significantly different from DGPS, where distances to RS can exceed several hundred kilometers. The accuracy of today's RTK is limited by the distance dependent errors from orbit, ionosphere and troposphere as well as station dependent influences like multipath and antenna phase center variations. For these reasons, the author proposes Network based GPS Carrier Phase Differential Positioning using Multiple RS which is detached from user receiver about 30km. An important part of the proposed system is algorithm and software development, named DAUNet. The main process is corrections computation, corrections interpolation and searching for the integer ambiguity. Corrections computation of satellite by satellite and epoch by epoch at each reference station are calculated by a Functional model and Stochastic model based on a linear combination algorithm and corrections interpolation at user receiver are used by area correction parameters. As results, the users can obtain the cm-level positioning.

  • PDF

Modification of IKONOS RPC Using Additional GCP (지상기준점 추가에 의한 IKONOS RPC 갱신)

  • Bang, Ki-In;Jeong, Soo;Kim, Kyung-Ok;Cho, Woo-Sug
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.4 s.22
    • /
    • pp.41-50
    • /
    • 2002
  • RPM is the one of the sensor models which is proposed by Open GIS Consortium (OGC) as image transfer standard. And it is the sensor model for end-users using IKONOS, a commercial pushbroom satellite, imagery which provide about 1m ground resolution. Parameters called RPC which is IKONOS RFM coefficients are serviced to end-users. But if some users try to make additional effort to get rigorous geo-spatial information, it is necessary to apply mathematic or abstract sensor models, because vendors don't offer any ancillary data for physical sensor models such as satellite orbit and navigation. Abstract sensor models such as pushbroom Direct Linear Transform (DLT) require many GCPs well distributed in imagery, and mathematic sensor model such as RFM, polynomials need much more GCPs. Therefore RPC modification using additional a few GCPs is the best solution. In this paper, two methods are proposed to modify RPC. One is method to use pseudo GCPs generated in normalized cubic, and another method uses parameters observations and a few GCPs. Through two methods, we get improvement of accuracy 50% and over.

  • PDF

Property of Focal Spot of Electron Beam Depending on the Anode Angle of X-ray Tube Using a Finite Element Method (유한요소법을 이용한 X-선관 양극각도에 의존하는 전자빔 초점 특성 연구)

  • Park, Tae-Young;Noh, Young-Il;Lee, Sang-Suk;Park, Rae-Jun;Kim, Ki-Seon
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.2
    • /
    • pp.52-57
    • /
    • 2015
  • The focal spot of electron beam depending on the anode angle in the structure and major parts of the X-ray tube was investigated by the OPERA-3D/SCALAR simulation program. The simulation worked on four spaces with with two spaces, including anode and cathode of X-ray tube, by applying the finite element method analysis. The analytical model and dimension for the emission orbit of thermal electrons made from one filament of the focused X-ray cathode is affected to the penumbra of detector for the X-ray depending on any real focal spot size. The model shape of focusing cap and focusing tube with an anode target angle and a cathode filament is analyzed by the current density distribution of thermal electrons. The focusing width of thermal electrons for the X-ray tube depended on the anode angle (${\theta}$). The focusing value of electron beams at a region of anode angle having $10^{\circ}{\sim}17^{\circ}$ maintained to below value of $70{\mu}m$. The minimum focal size of the electron beam was $40{\mu}m$ at an anode angle of $15^{\circ}$. The focused X-ray tube of many variables depended on the thermionic emission of hot electrons from the target trajectory. The focusing tube will contribute to the real design of X-ray for the development of future diagnosis medical device.