• Title/Summary/Keyword: Orbit Model

Search Result 417, Processing Time 0.043 seconds

Dynamic channel allocation between low-orbit satellite networks and terrestrial services using genetic algorithm (유전 알고리즘을 활용한 저궤도 위성 네트워크와 지상 서비스 간 동적 채널 할당)

  • Yeongi Cho;Han-Shin Jo
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.440-444
    • /
    • 2024
  • This paper presents a solution to the frequency coexistence problem between low earth orbit (LEO) satellite networks and other services by utilizing genetic algorithms. Non-terrestrial network (NTN) utilizing LEO satellites have mobility and need to address interference issues that may occur when sharing frequencies with terrestrial services according to propagation rules. In this study, we model the interference scenario based on the NTN operation scenario proposed by 3GPP, and derive the optimal channel allocation scheme for NTNs to protect terrestrial services while satisfying the minimum quality of service (QoS) through genetic algorithm. The simulation results show that the proposed method outperforms the existing fixed assignment method and graph coloring method, and enables efficient frequency sharing.

Magnetic Field Correction Method of Magnetometers in Small Satellites

  • Lee, Seon-Ho;Rhee, Seung-Wu;Ahn, Hyo-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.36-40
    • /
    • 2003
  • The considered satellite is supposed to operate in the earth-point mode and sun-point mode in accordance with the mission requirements. The magnetic field correction is based on the orbit geometry using a set of measured magnetic field data from the three-axis-magnetometer and its algorithm excludes the earth’s magnetic field model. Moreover, the usefulness of the proposed method is investigated throughout the simulation of KOMPSAT-1.

  • PDF

AN IMPROVED COMBINATORIAL OPTIMIZATION ALGORITHM FOR THE THREE-DIMENSIONAL LAYOUT PROBLEM WITH BEHAVIORAL CONSTRAINTS

  • Jun, Tie;Wang, Jinzhi;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.283-290
    • /
    • 2008
  • This paper is motivated by the problem of fitting a group of cuboids into a simplified rotating vessel of the artificial satellite. Here we introduce a combinatorial optimization model which reduces the three-dimensional layout problem with behavioral constraints to a finite enumeration scheme. Moreover, a global combinatorial optimization algorithm is described in detail, which is an improved graph-theoretic heuristic.

  • PDF

ANALYSIS ON THE PHOTOMETRIC ORBIT OF DI PEGASI

  • Chou, Kyong-Chol;Kitamura, Masatosi
    • Journal of The Korean Astronomical Society
    • /
    • v.1 no.1
    • /
    • pp.1-18
    • /
    • 1968
  • The photometric orbital elements of an Algol-type eclipsing variable, DI Pegasi, are derived by means of Fourier transforms from two-color photoelectric observations. The system shows a long term variation of its orbital period, which is interpreted as due to a continuing mass loss mechanism from the secondary component. Physical dimensions and a model of the system are also suggested here.

  • PDF

NORAD TLE CONVERSION FROM OSCULATING ORBITAL ELEMENT

  • Lee, Byoung-Sun
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.395-402
    • /
    • 2002
  • The NORAD type Two Line Element (TLE) was obtained from the osculating orbital elements by an iterative approximation procedure. The mathematical model was presented and computer program was developed for the conversion. The osculating orbital elements of the KOMPSAT-1 were converted into the NORAD TLE. Then the effect of the SGP4 atmospheric drag coefficient ($B^*$) was analyzed by comparison of the orbit propagation results with different $B^*$ values.

Dynamic Response Analysis of a Flexible Rotor During Impact on Backup Bearings (탄성 로터의 백업베어링 충돌 시 동적 응답 해석)

  • Park, K.J.;Bae, Y.C.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.22-28
    • /
    • 2012
  • Active magnetic bearings(AMBs) present a technology which has many advantages compared to traditional bearing concepts. However, they require backup bearings in order to prevent damages in the event of a system failure. In this study, the dynamics of an AMB supported rotor during impact on backup bearings is studied employing a detailed simulation model. The backup bearings are modeled using an accurate ball bearing model, and the model for a flexible rotor system is described using the finite element approach with the component mode synthesis. Not only the influence of the support stiffness, clearance and friction coefficient on the rotor orbit, but also bearing load are compared for various rotor system parameters. Comparing these results it is shown that the optimum backup bearing system can be applicable for a specific rotor system.