DOI QR코드

DOI QR Code

Dynamic channel allocation between low-orbit satellite networks and terrestrial services using genetic algorithm

유전 알고리즘을 활용한 저궤도 위성 네트워크와 지상 서비스 간 동적 채널 할당

  • Yeongi Cho (Dept. of Electronic Engineering, Hanyang University) ;
  • Han-Shin Jo (Dept. of Electronic Engineering, Hanyang University)
  • 조연기 ;
  • 조한신
  • Received : 2024.09.09
  • Accepted : 2024.09.24
  • Published : 2024.09.30

Abstract

This paper presents a solution to the frequency coexistence problem between low earth orbit (LEO) satellite networks and other services by utilizing genetic algorithms. Non-terrestrial network (NTN) utilizing LEO satellites have mobility and need to address interference issues that may occur when sharing frequencies with terrestrial services according to propagation rules. In this study, we model the interference scenario based on the NTN operation scenario proposed by 3GPP, and derive the optimal channel allocation scheme for NTNs to protect terrestrial services while satisfying the minimum quality of service (QoS) through genetic algorithm. The simulation results show that the proposed method outperforms the existing fixed assignment method and graph coloring method, and enables efficient frequency sharing.

본 논문은 유전 알고리즘을 활용하여 저궤도 위성 네트워크(LEO)와 다른 서비스 간의 주파수 공존 문제에 대한 해결 방안을 제시한다. LEO 위성을 이용하는 비지상 네트워크(NTN)는 동적 특성을 가지고 있으며, 전파 규칙에 따라 타 서비스와 주파수를 공유할 때 발생할 수 있는 간섭 문제를 해결해야 한다. 본 연구에서는 3GPP에서 제안한 NTN 운용 시나리오를 기반으로 간섭 시나리오를 모델링하고, 유전 알고리즘을 통해 NTN이 지상 서비스를 보호하면서도 최소한의 서비스 품질(QoS)를 만족하는 최적의 채널 할당방안을 도출하였다. 시뮬레이션 결과, 제안된 방법은 기존의 고정 할당 방식이나 그래프 컬러링 방식보다 우수한 성능을 보였으며, 효율적인 주파수 공유가 가능함을 확인하였다.

Keywords

Acknowledgement

This work was supported by Korea Research Institute for defense Technology planning and advancement(KRIT) grant funded by the Korea government(DAPA(Defense Acquisition Program Administration)) (21-106-A00-007, Space-Layer Intelligent Communication Network Laboratory, 2022).

References

  1. P. Kim, J.-G. Ryu, and W. Byun, "Research trends in global wireless communication technology based on the LEO satellite communication network," ETRI Electronics and Telecommunications Trends, vol.35, pp.83-91, 2020. DOI: 10.22648/ETRI.2020.J.350507
  2. Technical Specification Group Radio Access Network; Solutions for NR to support non-terrestrial networks (NTN), document TR 38.821 v.16.1.0, 3GPP, May, 2021.
  3. H. Al-Hraishawi, H. Chougrani, S. Kisseleff, E. Lagunas, and S. Chatzinotas, "A survey on nongeostationary satellite systems: The communication perspective," IEEE Communications Surveys & Tutorials, vol.25, no.1, pp.101-132, 2022. DOI: 10.1109/COMST.2022.3197695
  4. Use of the frequency bands 17.7-18.6 GHz, 18.8-19.3 GHz and 19.7-20.2 GHz (space-to-earth) and 27.5-29.1 GHz and 29.5-30 GHz (Earth-to-space) by earth stations in motion communicating with non-geostationary space stations in the fixed-satellite service, WRC-19. Resolution, 173, 2019.
  5. F. Zheng, Z. Pi, Z. Zhou, & K. Wang, "LEO satellite channel allocation scheme based on reinforcement learning," Mobile Information Systems, 2020. DOI: 10.1155/2020/8868888
  6. ITU-R Recommendations, "P.619 : Propagation data required for the evaluation of interference between stations in space and those on the surface of the Earth," 2021.
  7. W. Wang, X. Liu, "List-coloring based channel allocation for open-spectrum wireless networks," VTC-2005-Fall. 2005 IEEE 62nd Vehicular Technology Conference, vol.1, pp.690-694, 2005. DOI: 10.1109/VETECF.2005.1558001
  8. J. Elhachmi, J, Z. Guennoun, "Cognitive radio spectrum allocation using genetic algorithm," EURASIP Journal on Wireless Communications and Networking, 2016. DOI: 10.1186/s13638-016-0620-6